首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylella fastidiosa is a Gram‐negative, xylem‐limited, bacterium which is responsible, in Italy, for the olive quick decline syndrome (OQDS). The disease is caused by the subspecies pauca and emerged a few years ago in the Apulia province of Lecce, in the Salento peninsula, on Olea europaea plants. X. fastidiosa can infect different plant species and is well known in California as the causal agent of Pierce's disease on grape. Infections of susceptible hosts with X. fastidiosa are known to result in xylem vessel occlusions, water movement impairment, and accordingly to induce the typical desiccation symptoms. In this study, we investigated xylem vessel occlusions in healthy and naturally infected O. europaea plants grown in open field by analysing three olive cultivars widespread in the region that show different degree of susceptibility to the disease: the susceptible cultivars “Ogliarola salentina” and “Cellina di Nardò,” and the tolerant cultivar “Leccino.” Our results show that occlusions were caused by tyloses and gums/pectin gels, and not by bacterial cell aggregates. Our data also indicate that occlusions are not responsible for the symptomatology of the OQDS and, as observed in Leccino plants, they are not a marker of tolerance/resistance to the disease.  相似文献   

2.
Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device’s internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ~4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.  相似文献   

3.
Trunk woods of Early Carboniferous Protopitys buchiana show the earliest example of tylose formation and the first record for a progymnosperm. Protopitys tyloses are more densely located in inner trunk woods and near growth layer boundaries. We suggest, therefore, that an altered physiological state of living ray cells, during dormancy and/or following water stress, was necessary to make the woods vulnerable to tylose formation. Coupled with the distribution and proximity of abundant wood ray parenchyma to large xylem conducting cells, the positions of conduits filled with tyloses can be interpreted as ecophysiological responses of the plant to changes in local environment. In addition, some xylem conducting cells might have functioned as vessels. Fungal hyphae are present in some tracheary cells and in some areas with tyloses, but there is no evidence for wood trauma; we conclude, therefore, that these particular cases of tyloses are probably not induced by wound trauma. Protopitys buchiana wood thus shows structure/function similarities to modern woods with vessels, such as those of dicot angiosperms. This implies that ancient and modern plant ecophysiological responses correlate well with the physical parameters of their cellular construction.  相似文献   

4.
In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell–cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.  相似文献   

5.
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce’s disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.  相似文献   

6.

Background  

Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat.  相似文献   

7.
Xylella fastidiosa (Xf) is the xylem-dwelling bacterial agent associated with Pierce’s disease (PD), which leads to significant declines in productivity in agriculturally important species like grapevine (Vitis vinifera). Xf spreads through the xylem network by digesting the pit membranes (PMs) between adjacent vessels, thereby potentially changing the hydraulic properties of the stem. However, the effects of Xf on water transport vary depending on the plant host and the infection stage, presenting diverse outcomes. Here, we investigated the effects of polygalacturonase, an enzyme known to be secreted by Xf when it produces biofilm on the PM surface, on stem hydraulic conductivity, and PM integrity. Experiments were performed on six grapevine genotypes with varying levels of PD resistance, with the expectation that PM resistance to degradation by polygalacturonase may play a role in PD resistance. Our objective was to study a single component of this pathosystem in isolation to better understand the mechanisms behind reported changes in hydraulics, thereby excluding the biological response of the plant to the presence of Xf in the vascular system. PM damage only occurred in stems perfused with polygalacturonase. Although the damaged PM area was small (2%–9% of the total pit aperture area), membrane digestion led to significant changes in the median air-seeding thresholds, and most importantly, shifted frequency distribution. Finally, enzyme perfusion also resulted in a universal reduction in stem hydraulic conductivity, suggesting the development of tyloses may not be the only contributing factor to reduced hydraulic conductivity in infected grapevine.  相似文献   

8.
Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem‐limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H2O2) relative to the wild‐type. In addition, during early stages of grapevine infection, the survival rate was 1000‐fold lower for the oxyR mutant than for the wild‐type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell–cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization.  相似文献   

9.
The number of colony forming units (CFU) inside xylem vessels of leaf petioles were evaluated in tobacco by scanning electron microscopy followed by an image analysis. Symptom expression of Nicotiana tabacum, cultivars TNN, Havana and RP1, were correlated with the presence of bacteria inside leaf petiole vessels. The symptom expression were evaluated in terms of colony forming units per gram of colonized tissue and percentage of colonized vessels. No statistical differences were found among the varieties tested. Havana expressed the most intense symptoms, best indicating a better experimental host. We also observed that leaf symptoms could be reversed with the application of ammonium sulphate along with pruning. This routine was effective in delaying symptom development. In summary, colonization efficiency was similar in tobacco varieties. Fertilization may affect Xylella fastidiosa symptom expression and pruning may be used as an aid to diminish X. fastidiosa advance within the plant.  相似文献   

10.
Sun Q  Rost TL  Reid MS  Matthews MA 《Plant physiology》2007,145(4):1629-1636
The pruning of actively growing grapevines (Vitis vinifera) resulted in xylem vessel embolisms and a stimulation of tylose formation in the vessels below the pruning wound. Pruning was also followed by a 10-fold increase in the concentration of ethylene at the cut surface. When the pruning cut was made under water and maintained in water, embolisms were prevented, but there was no reduction in the formation of tyloses or the accumulation of ethylene. Treatment of the stems with inhibitors of ethylene biosynthesis (aminoethoxyvinylglycine) and/or action (silver thiosulfate) delayed and greatly reduced the formation of tyloses in xylem tissue and the size and number of those that formed in individual vessels. Our data are consistent with the hypotheses that wound ethylene production is the cause of tylose formation and that embolisms in vessels are not directly required for wound-induced tylosis in pruned grapevines. The possible role of ethylene in the formation of tyloses in response to other stresses and during development, maturation, and senescence is discussed.  相似文献   

11.

Background and Aims

The bacterium Xylella fastidiosa (Xf), responsible for Pierce''s disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf.

Methods

Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant.

Key Results

There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement.

Conclusions

Stem–leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are discussed.  相似文献   

12.
Characteristic symptoms of Pierce's disease (PD) in grapevines (Vitis vinifera L.) were observed in 2002 in the major grape production fields of central Taiwan. Disease severity in vineyards varied, and all investigated grape cultivars were affected. Diseased tissues were collected from fields for subsequent isolation and characterization of the causal agent of the disease (Xylella fastidiosa). Koch's postulates were fulfilled by artificially inoculating two purified PD bacteria to grape cultivars Kyoho, Honey Red and Golden Muscat. The inoculated plants developed typical leaf‐scorching symptoms, and similar disease severity developed in the three cultivars from which the bacterium was readily re‐isolated, proving that the leaf scorch of grapevines in Taiwan is caused by the fastidious X. fastidiosa. This confirmed PD of grapevines is also the first report from the Asian Continent. Phylogenetic analyses were performed by comparing the 16S rRNA gene and 16S‐23S rRNA internal transcribed spacer region (16S‐23S ITS) of 12 PD strains from Taiwan with the sequences of 13 X. fastidiosa strains from different hosts and different geographical areas. Results showed that the PD strains of Taiwan were closely related to the American X. fastidiosa grape strains but not to the pear strains of Taiwan, suggesting that the X. fastidiosa grape and pear strains of Taiwan may have evolved independently from each other.  相似文献   

13.
Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce''s disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce''s disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.  相似文献   

14.
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap.  相似文献   

15.
Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquensX. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.  相似文献   

16.
Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce’s disease (PD) and the impact of occlusions on the hosts’ water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen’s systemic spread in them, but may significantly suppress the vines’ water conduction, contributing to PD symptom development and the vines’ eventual death.Pierce’s disease (PD) of grapevines (Vitis vinifera), currently jeopardizing the wine and table grape industries in the southern United States and California, as well as in many other countries, is a vascular disease caused by the xylem-limited bacterium Xylella fastidiosa (Hopkins, 1989; Varela et al., 2001). The pathogen is transmitted mostly via xylem sap-feeding sharpshooters (e.g. Homalodisca vitripennis; Redak et al., 2004) and inhabits, proliferates, and spreads within the vessel system of a host grapevine (Fry and Milholland, 1990a; Hill and Purcell, 1995). PD symptom development in grapevines depends on the interactions between the pathogen and the host vine’s xylem tissue, through which the pathogen may achieve its systemic spread (Purcell and Hopkins, 1996; Krivanek and Walker, 2005; Pérez-Donoso et al., 2010; Sun et al., 2011). Since the path for this spread is the host’s xylem system, xylem tissue and its vessels have become the major focus for studying potential X. fastidiosa-host vine interactions at the cellular or tissue levels (Fry and Milholland, 1990b; Stevenson et al., 2004a; Sun et al., 2006, 2007; Thorne et al., 2006).One major issue related to this host-pathogen interaction is the relationship of a vine’s xylem anatomy to the X. fastidiosa population’s spread. Sun et al. (2006) did a detailed anatomical analysis of the stem secondary xylem, especially the vessel system. Stevenson et al. (2004b) described xylem connection patterns between a stem and the attached leaves. Other studies reported the presence of open continuous vessels connecting stems and leaves, which represent conduits that might facilitate the pathogen’s stem-to-leaf movement (Thorne et al., 2006; Chatelet et al., 2006, 2011). Chatelet et al. (2011) also suggested that vessel size and ray density were the two xylem features that were most relevant to the restriction of X. fastidiosa’s movement. These studies indicate the importance of understanding the grapevine’s xylem anatomy in order to characterize the grapevine host’s susceptibility or resistance to PD.Another focus of PD-related xylem studies is the tylose, a developmental modification that has important impacts on a vessel’s role in water transport and, potentially, its availability as a path for X. fastidiosa’s systemic spread through a vine. Tyloses are outgrowths into a vessel lumen from living parenchyma cells that are adjacent to the vessel and can transfer solutes into the transpiration stream via vessel-parenchyma (V-P) pit pairs (Esau, 1977). Tylose development involves the expansion of the portions of the parenchyma cell’s wall that are shared with the neighboring vessels, specifically the so-called pit membranes (PMs). Intensive tylose development may eventually block the affected vessel (Sun et al., 2006). Since tyloses occur in the vessel system of PD-infected grapevines (Esau, 1948; Mollenhauer and Hopkins, 1976; Stevenson et al., 2004a; Krivanek et al., 2005) that is also the avenue of X. fastidiosa’s spread and water transport, a great deal of effort has been made to understand tyloses and their possible relations to grapevine PD as well as to diseases caused by other vascular system-localized pathogens. One major aspect is to clarify the process of tylose development itself, in which an open vessel may be gradually sealed (Sun et al., 2006, 2008). Our investigations of the initiation of tylose formation in grapevines have identified ethylene as an important factor (Pérez-Donoso et al., 2007; Sun et al., 2007). In terms of the relationship of tyloses to grapevine PD, studies have so far led to several controversial viewpoints that are discussed below (Mollenhauer and Hopkins, 1976; Fry and Milholland, 1990b; Stevenson et al., 2004a; Krivanek et al., 2005). However, more convincing evidence is still needed to support any of them.Another issue potentially relevant to PD symptom development is the possibility that X. fastidiosa cells and/or their secretions contribute to the blockage of water transport in host vines. The bacteria secrete an exopolysaccharide (Roper et al., 2007a) that contributes to the formation of cellular aggregates. Accumulations of X. fastidiosa cells embedded in an exopolysaccharide matrix (occasionally identified as biofilms, gums, or gels) have been reported in PD-infected grapevines (Mollenhauer and Hopkins, 1974; Fry and Milholland, 1990a; Newman et al., 2003; Stevenson et al., 2004b). However, a more detailed investigation is still needed to clarify if and to what extent these aggregates affect water transport in infected grapevines.The xylem tissue in which X. fastidiosa spreads can be classified as primary xylem or secondary xylem, being derived from procambium or vascular cambium, respectively. Primary xylem is located in and responsible for material transport and structural support in young organs (i.e. leaves, young stems, and roots), while secondary xylem is the conductive and supportive tissue in more mature stems and roots (Esau, 1977). It should be noted that most of the earlier experimental results have been based on examinations of leaves (petioles or veins) or young stems of grapevines, which contain mostly primary xylem with little or no secondary xylem. However, X. fastidiosa’s systemic spread generally occurs after introduction during the insect vector’s feeding from an internode of one shoot. The pathogen then moves upward along that shoot and also downward toward the shoot base. The downward movement allows the bacteria to enter the vine’s other shoots via the shared trunk and then move upward (Stevenson et al., 2004a; Sun et al., 2011). These upward and downward bacterial movements occur through stems that contain significant amounts of secondary xylem but relatively dysfunctional primary xylem. Secondary and primary xylem show some major differences in the structure and arrangement of their cell components (Esau, 1977). In terms of the vessel system that is the path of X. fastidiosa’s spread, the secondary xylem has a large number of much bigger vessels with scalariform (ladder-like) PMs (and pit pairs) as the sole intervessel (I-V) PM type, compared with the primary xylem, which contains only a limited number of smaller vessels with multiple types of I-V PMs (Esau, 1948; Sun et al., 2006). Vessels in secondary xylem are also different from those in primary xylem in forming vessel groups and in the number of parenchyma cells associated with a vessel (as seen in transverse sections of xylem tissue). These features of secondary xylem can affect the initial entry and subsequent I-V movement of the pathogen and the formation of vascular occlusions, respectively, in stems containing significant amounts of secondary xylem. Recently, the X. fastidiosa population size only in stems with secondary xylem was found to correlate with the grapevine’s resistance to PD (Baccari and Lindow, 2011), indicating an important role of stem secondary xylem in determining a host vine’s disease resistance. Despite these facts, little is known about the pathogen-grapevine interactions in the stem secondary xylem and their possible impacts on disease development.This study addresses X. fastidiosa-grapevine interactions in stem secondary xylem and examines the resulting impacts on overall vine physiology, with a primary focus on vine water transport. We have made use of grapevine genotypes displaying different PD resistances and explored whether differences in the pathogen’s induction of vascular occlusions occur among the genotypes and, if so, how the differences impact X. fastidiosa’s systemic spread. Our overall, longer-term aim is to elucidate the functional role of vascular occlusions in PD development, an understanding that we view to be essential for identifying effective approaches for controlling this devastating disease.  相似文献   

17.
Tyloses form in xylem vessels in response to various environmental stimuli, but little is known of the kinetics or regulation of their development. Preliminary investigations indicated that wounds seal quickly with tyloses after pruning of grapevine shoots. In this study, tylose development was analyzed qualitatively and quantitatively at different depths and times from pruning cuts along current-year shoots of grapevines at basal, middle, and apical stem regions. Tyloses developed simultaneously within a single vessel but much separated in time among vessels. Pruning caused prodigious tylosis in vessels of grape stems, extending to approximately 1 cm deep and to 7 d after wounding, but about half of the vessels did not become completely occluded. The fraction of vessels forming tyloses was greatest in basal (85%) and least in apical (50%) regions. The depth of maximum density of tyloses was 4 mm from the cut in the basal region and 2 mm from the cut in the middle and apical regions. Tylose development was faster in the basal and middle than in the apical region. The pattern of tylose development is discussed in the context of wound repair and pathogen movement in grapevines.  相似文献   

18.
Shoot pruning could cause short-term damages to vines. In response to damage, tyloses develop in shoot xylem vessels interfering free water and mineral transportation. In this study, the tylosis development at different nodes of the current-year and perennial shoots of sixty three-year-old grapevines (Vitis vinifera L.) after pruning was investigated. The results showed that tyloses at the nodes closest to the trunk developed rapidly; and tylosis development initiated at the time when the size of vessel-ray pit was greater than that of parenchyma cell-parenchyma cell pit. In current-year shoots, tyloses were formed in up to 87% of the vessels, and 40% of the vessels were completely blocked by tyloses. In wound-induced perennial shoots, 30% of the vessels were completely blocked by tyloses. When few vessels were blocked by tyloses, new vessels could differentiate, and water transportation system may be restored. However, when tyloses developed in a large number of vessels and the large number of the vessels were blocked, the original capability of water transport was decreased (the largest decrease was 21.1% in this study), resulting in dehiscence or shrinkage cracking in this area. The study proved that the tylosis formation in functional vessels limited the water transport efficiency.  相似文献   

19.
Xylella fastidiosa causes diseases on a growing list of economically important plants. An understanding of how xylellae diseases originated and evolved is important for disease prevention and management. In this study, we evaluated the phylogenetic relationships of X. fastidiosa strains from citrus, grapevine, and mulberry through the analyses of random amplified polymorphic DNAs (RAPDs) and conserved 16S rDNA genes. RAPD analysis emphasized the vigorous genome-wide divergence of X. fastidiosa and detected three clonal groups of strains that cause Pierce's disease (PD) of grapevine, citrus variegated chlorosis (CVC), and mulberry leaf scorch (MLS). Analysis of 16S rDNA sequences also identified the PD and CVC groups, but with a less stable evolutionary tree. MLS strains were included in the PD group by the 16S rDNA analysis. The Asiatic origins of the major commercial grape and citrus cultivars suggest the recent evolution of both PD and CVC disease in North and South America, respectively, since X. fastidiosa is a New World organism. In order to prevent the development of new diseases caused by X. fastidiosa, it is important to understand the diversity of X. fastidiosa strains, how strains of X. fastidiosa select their hosts, and their ecological roles in the native vegetation. Received: 7 February 2002 / Accepted: 7 March 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号