首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Gardnerella vaginalis is a facultative gram positive organism that requires subculture every 1–2 days to maintain viability. It has been linked with bacterial vaginosis (BV), a syndrome that has been associated with increased risk for preterm delivery, pelvic inflammatory disease and HIV acquisition. About 10% of the G. vaginalis isolates have been reported to produce sialidase, but there have not been any studies relating sialidase production and biotype. Sialidase activity is dramatically increased in the vaginal fluid of women with BV and bacterial sialidases have been shown to increase the infectivity of HIV in vitro. There are 8 different biotypes of G. vaginalis. Biotypes 1–4 produce lipase and were reported to be associated with BV and the association of these biotypes with BV is under dispute. Other studies have demonstrated that G. vaginalis biotype 1 can stimulate HIV-1 production. Because of the discrepancies in the literature we compared the methods used to biotype G. vaginalis and investigated the relationship of biotype and sialidase production.  相似文献   

2.
The synthesis and characterization of new N‐donor bitriazolic tripods were reported. The in vitro antibacterial and antifungal activities of these products were screened against fungal strain (Candida pelliculosa) and against four bacterial strains (Micrococcus luteus, Bacillus subtilis, Listeria innocua, and Escherichia coli). Biological data revealed the effect of the chemical structure on antimicrobial activity. Molecular docking studies of some compounds showed that they could act as inhibitors for the biotin carboxylase enzyme.  相似文献   

3.
Ganoderma boninense is a white rot basidiomycete that causes basal stem rot disease of oil palm (Elaeis guineensis). The aims of this study were to identify endophytic basidiomycetes occurring naturally within oil palm and to assess their potential as biocontrol agents against G. boninense strain PER71 in vitro. In total, 376 isolates were recovered from samples collected from the root, stem and leaves of oil palm using Ganoderma‐selective medium. Ten of these isolates (2.7% of the total 376 isolates) were identified as basidiomycetes on the basis of clamp connections and the production of poroid basidiomes after incubation in glass jars containing PDA medium for 7–12 days. The isolates were identified using ITS rDNA sequencing as Neonothopanus nambi (five isolates), Schizophyllum commune (four isolates) and Ganoderma orbiforme (one isolate). The N. nambi isolates showed the greatest antagonistic activity against G. boninense, based on 73–85% inhibition of the radial growth measurements of G. boninense in dual culture and 76–100% inhibition of G. boninense growth in a culture filtrate assay. Possible modes of action for the antagonism shown by N. nambi against G. boninense in vitro include competition for substrate availability, space and the production of non‐volatile metabolites or antibiotics that inhibited the growth of G. boninense. Further in vivo investigations are required to determine the ability of N. nambi isolates to colonize oil palm seedlings and to protect oil palm from infection when challenged with G. boninense.  相似文献   

4.
The main aim of this research was the synthesis, spectral identification and in vitro antimicrobial evaluation of new hydrazides and hydrazide‐hydrazones of 2,3‐dihalogen substituted propionic acids. New hydrazides were obtained by the substitution reaction of appropriate ethyl esters of 2,3‐dihalogen substituted propionic acids with hydrazine hydrate. Then obtained hydrazides were subjected to condensation reaction with various aldehydes which yielded with new hydrazide‐hydrazone derivatives. All obtained compounds were identified on the basis of spectral methods (1H‐NMR, 13C‐NMR) and in vitro screened against a panel of bacterial and fungal strains according to EUCAST and CLSI guidelines.  相似文献   

5.

Background

Gardnerella vaginalis is described as a common vaginal bacterial species whose presence correlates strongly with bacterial vaginosis (BV). Here we report the genome sequencing and comparative analyses of three strains of G. vaginalis. Strains 317 (ATCC 14019) and 594 (ATCC 14018) were isolated from the vaginal tracts of women with symptomatic BV, while Strain 409-05 was isolated from a healthy, asymptomatic individual with a Nugent score of 9.

Principal Findings

Substantial genomic rearrangement and heterogeneity were observed that appeared to have resulted from both mobile elements and substantial lateral gene transfer. These genomic differences translated to differences in metabolic potential. All strains are equipped with significant virulence potential, including genes encoding the previously described vaginolysin, pili for cytoadhesion, EPS biosynthetic genes for biofilm formation, and antimicrobial resistance systems, We also observed systems promoting multi-drug and lantibiotic extrusion. All G. vaginalis strains possess a large number of genes that may enhance their ability to compete with and exclude other vaginal colonists. These include up to six toxin-antitoxin systems and up to nine additional antitoxins lacking cognate toxins, several of which are clustered within each genome. All strains encode bacteriocidal toxins, including two lysozyme-like toxins produced uniquely by strain 409-05. Interestingly, the BV isolates encode numerous proteins not found in strain 409-05 that likely increase their pathogenic potential. These include enzymes enabling mucin degradation, a trait previously described to strongly correlate with BV, although commonly attributed to non-G. vaginalis species.

Conclusions

Collectively, our results indicate that all three strains are able to thrive in vaginal environments, and therein the BV isolates are capable of occupying a niche that is unique from 409-05. Each strain has significant virulence potential, although genomic and metabolic differences, such as the ability to degrade mucin, indicate that the detection of G. vaginalis in the vaginal tract provides only partial information on the physiological potential of the organism.  相似文献   

6.
Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4′-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4′-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4′-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coli resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three α-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia.  相似文献   

7.
Aims: To purify and characterize an antimicrobial protein (bacteriocin) isolated from the dairy product‐derived Bacillus amyloliquefaciens. Methods and Results: An unknown bacterial species cultured from the Yogu Farm? probiotic dairy beverage was identified through 16S ribosomal RNA analysis as B. amyloliquefaciens, a phylogenetically close relative of Bacillus subtilis. The cell‐free supernatant (CFS) of overnight cultures was active against Listeria monocytogenes and also against clinical isolates of Gardnerella vaginalis and Streptococcus agalactiae. At the same time, several isolates of vaginal probiotic Lactobacilli were resistant to the CFS. The nature of the compound causing inhibitory activity was confirmed as proteinaceous by enzymatic digestion. The protein was isolated using ammonium sulfate precipitation, and further purified via column chromatography. PCR analysis was conducted to determine relatedness to other bacteriocins produced by Bacillus spp. Conclusion: The antimicrobial protein isolated from B. amyloliquefaciens was shown to be subtilosin, a bacteriocin previously reported as produced only by B. subtilis. Significance and Impact of the Study: This is the first report of intra‐species horizontal gene transfer for subtilosin and the first fully characterized bacteriocin isolated from B. amyloliquefaciens. Finally, this is the first report on subtilosin’s activity against bacterial vaginosis‐associated pathogens.  相似文献   

8.
The alarming rise in the emergence of antimicrobial resistance in human, animal and plant pathogens is challenging global health and food production. Traditional strategies used for antibiotic discovery persistently result in the re-isolation of known compounds, calling for the need to develop more rational strategies to identify new antibiotics. Additionally, anti-infective therapy approaches targeting bacterial signalling pathways related to virulence is emerging as an alternative to the use of antibiotics. In this perspective article, we critically analyse approaches aimed at revitalizing the identification of new antibiotics and to advance antivirulence therapies. The development of high-throughput in vivo, in vitro and in silico platforms, together with the progress in chemical synthesis, analytical chemistry and structural biology, are reviving a research area that is of tremendous relevance for global health.  相似文献   

9.
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that echinacoside (ECH), a phenylethanoid glycoside found in Cistanche deserticola, has a protective effect against the development of PD. However, the detailed mechanisms of how ECH suppresses neuronal death have not been fully elucidated. In this study, we confirmed that ECH protects nigrostriatal neurons against 6‐hydroxydopamine (6‐OHDA)‐induced endoplasmic reticulum stress (ERS) in vivo and in vitro. ECH rescued cell viability in damaged cells and decreased 6‐OHDA‐induced reactive oxygen species accumulation in vitro. It also rescued tyrosine hydroxylase and dopamine transporter expression in the striatum, and decreased α‐synuclein aggregation following 6‐OHDA treatment in vivo. The validated mechanism of ECH activity was the reduction in the 6‐OHDA‐induced accumulation of seipin (Berardinelli–Seip congenital lipodystrophy 2). Seipin has been shown to be a key molecule related to motor neuron disease and was tightly associated with ERS in a series of in vivo studies. ECH attenuated seipinopathy by promoting seipin degradation via ubiquitination. ERS was relieved by ECH through the Grp94/Bip‐ATF4‐CHOP signal pathway.  相似文献   

10.
In this study, the in vitro and in vivo essential oil (EO) composition and genetic variability in six micropropagated genotypes of Thymus saturejoides Coss ., a Mediterranean medicinal and aromatic plant, were analyzed by GC/MS and randomly amplified polymorphic DNA (RAPD). Yield and composition of the EO varied between genotypes. Cluster analysis based on RAPD data and EO grouped the six genotypes in three groups in both culture conditions, thus showing considerable intraspecific genetic and chemical variations. Applying the Mantel test, the result showed a significant correlation between the two proximity matrices RAPD and EO obtained from in vitro genotypes, whereas this correlation was not observed when using the EO obtained from the in vivo genotypes.  相似文献   

11.
The amount of sesquiterpene lactones and the lactone profile of Arnica montana L. in flowering and seed formation stages in vitro and in vivo propagated from seeds of German, Ukrainian, and Austrian origin and grown in two experimental fields were studied. It was found that in vitro propagated 2‐year plants in full flowering stage accumulated higher amount of lactones in comparison to in vivo propagated 3‐year plants and to the seed formation stage, respectively. Helenalins predominated in in vivo propagated 2‐year or in vitro propagated 3‐year plants. 2‐Methylbutyrate (2MeBu) was the principal ester in the samples with prevalence of helenalins, while isobutyrate (iBu) was the major one in the samples with predominance of 11,13‐dihydrohelenalins. The results revealed that the environmental conditions on Vitosha Mt. are more suitable for cultivation of Amontana giving higher content of lactones.  相似文献   

12.
Cytochrome P450 CYP6G1 has been implicated in the resistance of Drosophila melanogaster to numerous pesticides. While in vivo and in vitro studies have provided insight to the diverse functions of this enzyme, direct studies on the isolated CYP6G1 enzyme have not been possible due to the need for a source of recombinant enzyme. In the current study, the Cyp6g1 gene was isolated from D. melanogaster and re-engineered for heterologous expression in Escherichia coli. Approximately 460 nmol L?1 of P450 holoenzyme were obtained in 500 mL cultures. The recombinant enzyme was located predominantly within the bacterial cytosol. A two-step purification protocol using Ni-chelate affinity chromatography followed by removal of detergent on a hydroxyapatite column produced essentially homogenous enzyme from both soluble and membrane fractions. Recombinant CYP6G1 exhibited p-nitroanisole O-dealkylation activity but was not active against eleven other typical P450 marker substrates. Substrate-induced binding spectra and IC50 values for inhibition of p-nitroanisole O-dealkylation were obtained for a wide selection of pesticides, namely DDT, imidacloprid, chlorfenvinphos, malathion, endosulfan, dieldrin, dicyclanil, lufenuron and carbaryl, supporting previous in vivo and in vitro studies on Drosophila that have suggested that the enzyme is involved in multi-pesticide resistance in insects.  相似文献   

13.
Xu R  Shang N  Li P 《Anaerobe》2011,17(5):226-231
The aim of the study was to purify the exopolysaccharides (EPS) produced from Bifidobacterium animalis RH, which was isolated from the feces of Bama centenarians in Guangxi of China, and evaluate their antioxidant activities in vitro and in vivo. 2 fractions, a neutral EPS fraction (EPSa) and an acidic EPS fraction (EPSb), were obtained and compared for antioxidative activity. In vitro, they both showed remarkable inhibition effect on lipid peroxidation and strong DPPH radical scavenging activity, hydroxyl radical scavenging activity, superoxide radical scavenging activity, in which the last two were measured by the electron spin resonance (ESR). In vivo, EPSa and EPSb were orally administrated for 30 days in a d-galactose induced aged mice model. As results, they both could significantly increase the activities of SOD, CAT and total antioxidant capacity (TAOC) in serums and glutathione GST in livers. They also could inhibit significantly the formation of MDA in serums and livers, and reduce the activity of MAO and lipofuscin accumulation in mice brain. Moreover, EPSb exhibited much higher antioxidant activities than EPSa in vitro and in vivo. The results suggested that EPS fractions of Bifidobacterium animalis RH had direct and potent antioxidant activities.  相似文献   

14.
The increased resistance of fish pathogens to conventional treatments has lead researchers to investigate the antibacterial properties of natural resources, such as essential oils (EOs) of plants, in an effort to find products that are less harmful to the environment. The objective of this review is to provide an overview of the studies, in vivo and in vitro, that addressed the use of EOs and their major compounds as antimicrobial agents in fish, to identify the best EOs and compounds to investigate considering feasibility of application and suggest possible future studies. To date, studies suggest that the use of EOs in the prevention and/or treatment of infectious diseases in fish may be a promising strategy to reduce the use of conventional antibiotics in aquaculture, since several EOs effectively reduce or avoid the effects of bacterial infections in fish. The use of EOs through nanotechnology delivery systems, especially in dietary supplementation experiments, is promising. This form of application of the EOs allows a potentiation and targeting of the desired effect of the EOs and also allows the protection of EOs active constituents against enzymatic hydrolysis, deserving further study.  相似文献   

15.
《Fungal Biology Reviews》2013,27(4):109-120
Plant defensins are small basic peptides that are inhibitory against a range of plant and human pathogens. Their in vitro antimicrobial activity and structural similarity with human and insect defensins indicated an important role for plant defensins in the innate immune system of plants. Regarding their mode of antimicrobial action, most plant defensins interact with a specific microbial surface receptor, resulting in microbial cell death via e.g. induction of apoptosis. However, accumulating evidence suggests additional in vivo functions of these plant defensins, and by extension of the more recently discovered defensin-like peptides, in general plant development. In this review we will discuss both, the functional roles of defensins in the plant and their modes of antimicrobial action.  相似文献   

16.
17.
Mature differentiated macrophages can self‐maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self‐renewal ability in vitro and in vivo. Overexpression of SIRT1 during bone marrow‐derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self‐renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine‐induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self‐renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self‐renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self‐renewal might be a relevant parameter of ageing.  相似文献   

18.
《Fungal Biology Reviews》2012,26(4):109-120
Plant defensins are small basic peptides that are inhibitory against a range of plant and human pathogens. Their in vitro antimicrobial activity and structural similarity with human and insect defensins indicated an important role for plant defensins in the innate immune system of plants. Regarding their mode of antimicrobial action, most plant defensins interact with a specific microbial surface receptor, resulting in microbial cell death via e.g. induction of apoptosis. However, accumulating evidence suggests additional in vivo functions of these plant defensins, and by extension of the more recently discovered defensin-like peptides, in general plant development. In this review we will discuss both, the functional roles of defensins in the plant and their modes of antimicrobial action.  相似文献   

19.
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome‐reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm‐associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome‐reduced bacterium that can fight against clinically relevant biofilm‐associated bacterial infections.  相似文献   

20.
Molecular hydrogen (H2) can be produced in green microalgae by [FeFe]‐hydrogenases as a direct product of photosynthesis. The Chlamydomonas reinhardtii hydrogenase HYDA1 contains a catalytic site comprising a classic [4Fe4S] cluster linked to a unique 2Fe sub‐cluster. From in vitro studies it appears that the [4Fe4S] cluster is incorporated first by the housekeeping FeS cluster assembly machinery, followed by the 2Fe sub‐cluster, whose biosynthesis requires the specific maturases HYDEF and HYDG. To investigate the maturation process in vivo, we expressed HYDA1 from the C. reinhardtii chloroplast and nuclear genomes (with and without a chloroplast transit peptide) in a hydrogenase‐deficient mutant strain, and examined the cellular enzymatic hydrogenase activity, as well as in vivo H2 production. The transformants expressing HYDA1 from the chloroplast genome displayed levels of H2 production comparable to the wild type, as did the transformants expressing full‐length HYDA1 from the nuclear genome. In contrast, cells equipped with cytoplasm‐targeted HYDA1 produced inactive enzyme, which could only be activated in vitro after reconstitution of the [4Fe4S] cluster. This indicates that the HYDA1 FeS cluster can only be built by the chloroplastic FeS cluster assembly machinery. Further, the expression of a bacterial hydrogenase gene, CPI, from the C. reinhardtii chloroplast genome resulted in H2‐producing strains, demonstrating that a hydrogenase with a very different structure can fulfil the role of HYDA1 in vivo and that overexpression of foreign hydrogenases in C. reinhardtii is possible. All chloroplast transformants were stable and no toxic effects were seen from HYDA1 or CPI expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号