首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The population ecology of rare species   总被引:3,自引:0,他引:3  
There is no general theory of rarity, although one is sorely needed both to understand population dynamics and to determine conservation priorities. Here we suggest some of the strands that might be woven into such a theory. They include relationships between local abundance, geographic range size and body size of species, and the determinants of minimum viable population sizes. In each of these areas much can still be learnt from the classical 'compare and contrast' approach using assemblages of species from a variety of taxa. Freshwater fish have contributed relatively little to the broad ecological literature in this respect. We perform some tentative analyses for this group of species, and speculate on how they might fit into our current understanding of rarity.  相似文献   

3.
4.
  总被引:1,自引:0,他引:1  
  相似文献   

5.
Rarity in the tropics: biogeography and macroecology of the primates   总被引:2,自引:0,他引:2  
Aim To describe rarity and elucidate its biology in a tropical mammalian order, the Primates. Location Africa, Central and South America, Asia, Madagascar. Methods A review of the literature, with some additional analyses using data from the literature. A variety of definitions of rarity are used in order to describe it and to investigate its biology by correlating the degree of rarity with a variety of biological traits indicative of resource use (e.g. size of annual home range), reproductive rate (e.g. birth interval)and specialization (e.g. number of habitat types used). Results Few primate taxa occur outside the tropics, and most taxa are rare (small geographical range size or latitudinal extent, low density or both). Latitudinal extent is narrower at lower latitudes in Africa and Asia, but the potential resultant packing of taxa appears not to explain the taxonomic diversity gradient. Whilst primate species do not show the common, positive density by range size relationship, primate genera show a significant shallow slope, and primate families/subfamilies a strongly positive slope. Rare taxa are specialized, but neither use more resources nor breed more slowly than common taxa. The correlation of rarity and specialization is via geographical range: taxa with small ranges, or small ranges for their density, are specialized, but not taxa at low density. Common taxa are generalized because they consist of more differently specialized subtaxa, not because each subtaxon is generalized. Main conclusions Most primate taxa are rare, in which case most are presumably likely to go extinct. Rare primates are specialized, but do not necessarily use more resources, nor breed more slowly. Specialization as an explanation for rarity appears to work via constriction of range size, not of density. Common primates might be common (large range size) not because subtaxa or individuals are generalized, but because they are composed of more subtaxa. A consequence could be that persistence of even common taxa will depend on conservation of several populations scattered across the taxon's geographical range.  相似文献   

6.
    
Aim  To identify the factors that contribute to variation in abundance (population density), and to investigate whether habitat breadth and diet breadth predict macroecological patterns in a suborder of passerine birds (Meliphagoidea).
Location  Australia (including Tasmania).
Methods  Mean abundance data were collated from site surveys of bird abundance (the Australian Bird Count); range size and latitudinal position data from published distribution maps; and body mass and diet breadth information from published accounts. A diversity index of habitats used (habitat breadth) was calculated from the bird census data. We used bivariate correlation and multiple regression techniques, employing two phylogenetic comparative methods: phylogenetic generalized least squares and independent contrasts.
Results  Body mass and latitude were the only strong predictors of abundance, with larger-bodied and lower-latitude species existing at lower densities. Together, however, body mass and latitude explained only 11.1% of the variation in mean abundance. Range size and habitat breadth were positively correlated, as were diet breadth and body mass. However, neither range size, nor habitat breadth and diet breadth, explained patterns in abundance either directly or indirectly.
Main conclusions  Levels of abundance (population density) in meliphagoid birds are most closely linked to body mass and latitudinal position, but not range size. As with many other macroecological analyses, we find little evidence for aspects of niche breadth having an effect on patterns of abundance. We hypothesize that evolutionary age may also have a determining effect on why species tend to be rarer (less abundant) in the tropics.  相似文献   

7.
    
Climate warming threatens the survival of species at their warm, trailing‐edge range boundaries but also provides opportunities for the ecological release of populations at the cool, leading edges of their distributions. Thus, as the climate warms, leading‐edge populations are expected to utilize an increased range of habitat types, leading to larger population sizes and range expansion. Here, we test the hypothesis that the habitat associations of British butterflies have expanded over three decades of climate warming. We characterize the habitat breadth of 27 southerly distributed species from 77 monitoring transects between 1977 and 2007 by considering changes in densities of butterflies across 11 habitat types. Contrary to expectation, we find that 20 of 27 (74%) butterfly species showed long‐term contractions in their habitat associations, despite some short‐term expansions in habitat breadth in warmer‐than‐usual years. Thus, we conclude that climatic warming has ameliorated habitat contractions caused by other environmental drivers to some extent, but that habitat degradation continues to be a major driver of reductions in habitat breadth and population density of butterflies.  相似文献   

8.
  总被引:1,自引:0,他引:1  
Aim To test for correlations between plant traits and geographic range size. Location: New Zealand. Methods Trait data were derived from comparative experiments, in which plants were grown in pots or in a common garden, that tested for intrinsic differences among the species in traits relating to growth, reproduction and dispersal. Controlled experiments were used to test for differences in responses to drought and waterlogging stress. Geographic range size was measured as the number of 10 km grid squares in the New Zealand region containing at least one occurrence of the species. Results Growth rate, dispersal capacity and environmental tolerance were all positively related to geographic range size. Geographically restricted species tended to have more variable flowering between years. Flowering intensity, reproductive allocation, seed set, diaspore size, and responses to single environmental factors were not related to geographic range size. Main conclusions The differences between range‐restricted and widespread Chionochloa species appear to represent alternative strategies of coping with environmental change in a dynamic landscape. Range‐restricted species are specialized to temporally persistent habitats that are of limited geographic extent. As a consequence, they have evolved traits that conflict with persistence in widespread habitats. The implication for conservation management is that the conservation of rare plants will frequently depend on protection of their habitats. The widespread Chionochloa species possess traits that enable them to disperse to and occupy a greater range of habitats. These traits have allowed some of these species to expand their ranges following environmental changes that favoured an increase in grassland extent.  相似文献   

9.
Worldwide, many rare plant species occur in shallow-soil, drought-prone environments. For most of these species, the adaptations required to be successful in their own habitats, as well as their possible consequences for establishment and persistence in others, are unknown. Here, two rare Hakea (Proteaceae) species confined to shallow-soil communities in mediterranean-climate south-western Australia were compared with four congeners commonly occurring on deeper soils. Seedlings were grown for 7 months in a glasshouse in individual 1.8 x 0.2-m containers, to allow for unconstrained root development. In addition, a reciprocal transplant experiment was carried out. The rare Hakea species differed consistently from their common congeners in their spatial root placement. They invested more in deep roots and explored the bottom of the containers much more quickly. In the reciprocal transplant experiment they showed increased survival in their own habitat, but not in others. This research suggests that shallow-soil endemics have a specialized root system that allows them to explore a large rock surface area, thereby presumably increasing their chance to locate cracks in the underlying rock. However, this root-system morphology may be maladaptive on deeper soils, providing a possible explanation for the restricted distribution of many shallow-soil endemics.  相似文献   

10.
    
Aim Across a wide variety of organisms, taxa with high local densities (abundance) have large geographical ranges (distributions). We use primatology's detailed knowledge of its taxon to investigate the form and causes of the relationship in, unusually for macroecological analysis, a tropical taxon. Location Africa, Central and South America, Asia, Madagascar. Methods To investigate the form of the density–range relationship, we regressed local density on geographical range size, and also on female body mass, because in the Primates, density correlates strongly with mass. To investigate the biological causes of the relationship, we related (1) abundance (density × range size) and (2) residuals from the density–range regression lines to various measures of (i) resource use, (ii) reproductive rate and (iii) potential specialization. All data are from the literature. Analyses were done at the level of species (n = 140), genera (n = 60) and families/subfamilies (n = 17). We present various levels of results, including for all data, after omission of outlier data, after correction for phylogenetic dependence, and after Bonferroni correction of probabilities for multiple comparisons. Results Regarding the form of the relationship, Madagascar primates are clear outliers (high densities in small ranges). Among the remaining three realms, the relation of density to range is weak or non‐existent at the level of species and genera. However, it is strong, tight and linear at the level of families/subfamilies (r2 = 0.6, F1,10 = 19, P < 0.01). Although among primates, density is very significantly related to mass, at no taxonomic level is range size related to body mass. Consequently, removing the effects of mass makes little to no difference to density–range results. Regarding the biology of the relationship, only traits indicative of specialization are associated with abundance (meaning numbers): rare taxa are more specialized than are abundant taxa. The association is largely via range size, not density. Across families, no traits correlate significantly with the density–range relationship, nor with deviations from it, despite the strength of the relationship at this taxonomic level. Main conclusions We suggest that in macroecology, analysis at taxonomic levels deeper than that of the relatively ephemeral species can be appropriate. We argue that the several purely methodological explanations for the positive density–range size relationship in primates can be rejected. Of the various biological hypotheses, those having to do with specialization–generalization seem the only applicable ones. The fact that the relationship is entirely via range size, not via density, means that while we might have a biology of range size, we do not yet have one of the density–geographical range relationship. It is probably time to search for multivariate explanations, rather than univariate ones. However, we can for the first time, for at least primates, suggest that any association of abundance or range size with specialization is via the number of different subtaxa, not the average degree of specialization of each subtaxon. The implication for conservation is obvious.  相似文献   

11.
Species that exploit a wide range of resources or habitats (generalists) tend to be widely distributed, whereas species that exploit a narrow range of resources or habitats (specialists) often have a limited distribution. The distribution patterns are thought to result from specialists using relatively smaller habitats than those exploited by generalists. I used data from 1,725 km of primate surveys that I conducted in Guyana to test these hypotheses. Habitat breadth is the total number of different habitat types occupied by each species. I used the total number of different food categories exploited by each species to measure dietary breadth. Geographic range size is correlated with habitat breadth but not with dietary breadth or body size for the 8 primate species in Guyana. Habitat generalists—red howlers and wedge-capped capuchins—range into all habitats. Habitat specialists—spider monkeys, brown bearded sakis, and golden-handed tamarins—range only into large habitats. Habitat generalists tend to be dietary type specialists in Guyana. I suggest that only habitat generalists can subsist on the low-quality foods in small habitats in Guyana. Conversely, habitat specialists tend to be dietary type generalists in Guyana. They must feed on a variety of food types in large habitats. However, using the number of food categories exploited as a measure of dietary breadth may be only a weak aspect of multidimensional niche. Researchers testing biogeographic hypotheses associated with dietary breadth should consider including multivariate indicators of both the types of food categories eaten and the number of plant species exploited.  相似文献   

12.
    

Motivation and aim

Mapping the spatial distribution of biodiversity is critical for understanding its fundamental drivers (e.g. speciation, environmental filtering) as well as for conservation assessment. An important dimension of this topic is how the distributions of subsets of species contribute to the overall distribution of biodiversity. Although studies have previously investigated the role of geographically common and rare species in determining these patterns, their respective contributions appear to vary between studies. Knowing which species contribute disproportionately to the spatial distribution of biodiversity enables the identification of key indicator species for biodiversity assessments across large areas and is important for prioritising areas for conservation actions. An extensive review of the literature was carried out to synthesise research on how geographic rarity contributes to spatial patterns of biodiversity. We identify potential explanations for the discrepancies in findings between studies and identify opportunities for further research.

Results

Many studies on the contribution of geographic commonness and rarity to the spatial distribution of biodiversity focus on species richness. A prevalent view is that common (widespread) species contribute disproportionately, although this is not ubiquitous across studies due to factors such as the geographic extent from which relative rarity is quantified. We identify research pathways that will further improve our knowledge of how geographically common and rare species shape the spatial distribution of biodiversity including the impact of spatial scale on species contributions and the incorporation of biodiversity components beyond taxonomic alpha diversity, that is functional and phylogenetic diversity.

Main conclusions

Future research should incorporate multiple biodiversity components and model scale dependency. This will further our knowledge on the underlying processes that shape the spatial variation of biodiversity across the planet and help inform biological surveys and conservation activities.  相似文献   

13.
1 Using data from a survey of over 10 000 1-m2 quadrats in a 3000-km2 area, we examined the relationship between abundance and range for the vascular plant flora of central England.
2 At the level of the whole landscape, abundance was not related to local, regional or national range. Local, regional and national range were closely related to each other.
3 At the level of the whole landscape, range was significantly and positively related to both niche breadth (expressed as the range of habitats exploited) and to habitat availability, although niche breadth appeared to be more important. Abundance was not related to niche breadth or habitat availability. Since specialist species are mainly confined to uncommon habitats (especially wetlands), we conclude that the relationship between range and niche breadth is not an artefact of widespread species passively sampling more habitats.
4 At the level of individual habitat types, significant positive relationships between range and abundance were common. These relationships remained after controlling for the effects of phylogeny. For predominantly annual weed communities, the relationship was linear, but for perennial communities it was markedly 'upper triangular', i.e. all combinations of range and abundance were found except wide range/low abundance. The evidence suggests that this difference can be attributed to the greater mobility of annual weeds.  相似文献   

14.
    
Aim To test whether functional homogenization of bird communities is promoted by anthropogenic landscape transformation, using specialization and habitat preference indices that account for the multidimensionality of niches. Location Catalonia, north‐east Iberian Peninsula. Methods We used data on bird species occurrences and landscape features in 2834 1‐km2 squares. Three orthogonal landscape gradients, which were taken as niche dimensions, were defined by means of principal components analysis (PCA). Specialization and habitat preference indices were created for 103 terrestrial bird species on the basis of their frequency of occurrence variation along the landscape gradients. These indices, together with species rarity, were then averaged for bird communities. We then analysed the patterns of variation of communities’ mean specialization, mean rarity and mean habitat preference values along a gradient of agricultural–forest habitat mosaics. Results Wherever we found a significant variation in the degree of specialization along the agricultural–forest gradient, agricultural habitats held more specialized bird communities than did forest ones and bore, on average, rarer species. Thus, results contradicted our initial hypothesis that humanized areas would bear more functionally homogenized bird communities. Higher α‐diversity values tended to be associated with generalist communities and with those having rarer species. Main conclusions Estimations of bird community specialization for different niche dimensions can behave differently along certain landscape gradients, and some of these differences can be explained by the variation of mean habitat preferences. Thus, we argue that a multidimensional approach to assess average niche breadth of communities can be more informative than a unidimensional measure. Our results suggest that widespread land abandonment and current secondary forest expansion throughout the Mediterranean area are promoting functional homogenization of bird communities. It would be desirable to construct larger‐scale indicators of functional homogenization in order to monitor communities’ responses to widespread landscape changes.  相似文献   

15.
    
Abstract.
  • 1 Species rarity is a common phenomenon in the biological world. Although rare species have always interested biologists, the meaning of ‘rare’ has not always been clear with the definition of rarity often arbitrary.
  • 2 In the current study, we investigate rarity in stream ecosystems using black flies (Diptera: Simuliidae). We defined rare species a priori as those species found ≤ 10% of stream sites examined (n = 111 streams for ‘summer collections’; n = 88 collection for ‘spring’ collections). Hence, we are exploring only one axis of rarity, restricted range.
  • 3 We first consider the distribution of each rare species separately to determine if the mean (euclidian) distance among streams (habitats) for each rare species differs from a random model. We next took a collective approach by pooling all rare species to determine the influence of stream conditions, niche breadth, and distance among habitats on rarity.
  • 4 Even within this biologically uniform group of flies, dispersal, range limits, and stream conditions all might play a role in rarity, and the importance of each of these factors appear to vary among species. Rather than looking for broad causes of rarity, future studies might be more fruitful if they looked at species‐specific causes.
  相似文献   

16.
    
Explanations for the evolution of body size in mammals have remained surprisingly elusive despite the central importance of body size in evolutionary biology. Here, we present a model which argues that the body sizes of Nearctic mammals were moulded by Cenozoic climate and vegetation changes. Following the early Eocene Climate Optimum, forests retreated and gave way to open woodland and savannah landscapes, followed later by grasslands. Many herbivores that radiated in these new landscapes underwent a switch from browsing to grazing associated with increased unguligrade cursoriality and body size, the latter driven by the energetics and constraints of cellulose digestion (fermentation). Carnivores also increased in size and digitigrade, cursorial capacity to occupy a size distribution allowing the capture of prey of the widest range of body sizes. With the emergence of larger, faster carnivores, plantigrade mammals were constrained from evolving to large body sizes and most remained smaller than 1 kg throughout the middle Cenozoic. We find no consistent support for either Cope's Rule or Bergmann's Rule in plantigrade mammals, the largest locomotor guild (n = 1186, 59% of species in the database). Some cold‐specialist plantigrade mammals, such as beavers and marmots, showed dramatic increases in body mass following the Miocene Climate Optimum which may, however, be partially explained by Bergmann's rule. This study reemphasizes the necessity of considering the evolutionary history and resultant form and function of mammalian morphotypes when attempting to understand contemporary mammalian body size distributions.  相似文献   

17.
    

Regimes of cladogenetic change in body size recognized in the fossil record are related to the time scales over which they are observed. A new categorization of regimes of cladogenetic size change is proposed: this scheme includes seventeen types. In a random distribution, the pure, single‐cause regimes are rare (0.01 probability of appearance) while mixed regimes, resulting from the simultaneous operation of two or more causes are frequent (0.115 probability of appearance). Some regimes seem to be nonrandomly distributed.  相似文献   

18.
One of the most important tasks in conservation biology is identifying species at risk from extinction and establishing the most likely factors influencing this risk. Here, we consider an ecologically well-defined, monophyletic group of organisms, the true hawks of the family Accipitridae, which are not only among the most studied, but also contain some of the rarest bird species in the world. We investigate which intrinsic and extrinsic factors, covering morphology, life history and ecology, covary with International Union for the Conservation of Nature and Natural Resources threat status, as well as global population size and geographic range size. By decomposing threat status into population size and range size, we test whether any factors are generally important: we found that species with less habitat specialization, a larger clutch size and more plumage polymorphism were associated with lower extinction risk and larger population and range sizes. Species with special habitat requirements might be less capable of dealing with habitat transformation and fragmentation, while species with small clutch sizes might not be able to reverse population declines. Plumage polymorphism might indicate the size of the species' gene pool and could be a good marker of extinction risk. The analyses also emphasized that no single factor is likely to be sufficient when predicting the threat of extinction.  相似文献   

19.
    
Aim To show that the frequently reported positive trend in the abundance–range‐size relationship does not hold true within a montane bird community of Afrotropical highlands; to test possible explanations of the extraordinary shape of this relationship; and to discuss the influence of island effects on patterns of bird abundance in the Cameroon Mountains. Location Bamenda Highlands, Cameroon, Western Africa. Methods We censused birds during the breeding season in November and December 2003 using a point‐count method and mapped habitat structure at these census points. Local habitat requirements of each species detected by point counts were quantified using canonical correspondence analysis, and the size of geographical ranges of species was measured from their distribution maps for sub‐Saharan Africa. We tested differences in abundance, niche breadth and niche position between three species groups: endemic bird species of the Cameroon Mountains, non‐endemic Afromontane species, and widespread species. Results We detected neither a positive nor negative abundance–range‐size relationship in the bird community studied. This pattern was caused by the similar abundance of widespread, endemic and non‐endemic montane bird species. Moreover, endemic and non‐endemic montane species had broader local niches than widespread species. The widespread species also used more atypical habitats, as indicated by the slightly larger values of their niche positions. Main conclusions The relationship detected between abundance and range size does not correspond with that inferred from contemporary macroecological theory. We suggest that island effects are responsible for the observed pattern. Relatively high abundances of montane species are probably caused by their adaptation to local environmental conditions, which was enabled by climatic stability and the isolation of montane forest in the Cameroon Mountains. Such a unique environment provides a less suitable habitat for widespread species. Montane species, which are abundant at present, may also have had large ranges in glacial periods, but their post‐glacial distribution may have become restricted after the retreat of the montane forest. On the basis of comparison of our results with studies describing the abundance structure of bird communities in other montane areas in the Afrotropics, we suggest that the detected patterns may be universal throughout Afromontane forests.  相似文献   

20.
    
Increasingly large presence‐only survey datasets are becoming available for use in conservation assessments. Potentially, these records could be used to determine spatial patterns of plant species rarity and endemism. We test the integration of a large South Korean species record database with Rabinowitz rarity classes. Rabinowitz proposed seven classes of species rarity using three variables: geographic range, habitat specificity, and local population size. We estimated the range size and local abundance of 2,215 plant species from species occurrence records and habitat specificity as the number of landcover types each species’ records were found in. We classified each species into a rarity class or as common, compared species composition by class to national lists, and mapped the spatial pattern of species richness for each rarity class. Species were classed to narrow or wide geographic ranges using 315 km, the average from a range size index of all species (Dmax), based on maximum distance between observations. There were four classes each within the narrow and wide range groups, sorted using cutoffs of local abundance and habitat specificity. Nationally listed endangered species only appeared in the narrow‐range classes, while nationally listed endemic species appeared in almost all classes. Species richness in most rarity classes was high in northeastern South Korea especially for species with narrow ranges. Policy implications. Large presence‐only surveys may be able to estimate some classes of rarity better than others, but modification to include estimates of local abundance and habitat types, could greatly increase their utility. Application of the Rabinowitz rarity framework to such surveys can extend their utility beyond species distribution models and can identify areas that need further surveys and for conservation priority. Future studies should be aware of the subjectivity of the rarity classification and that regional scale implementations of the framework may differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号