首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of controlling wheat scab (caused by Fusarium graminearum Schw.) was explored by engineering wheat plants for constitutive expression of pathogenesis-related (PR) protein genes. A rice thaumatin-like protein (TLP) gene (tlp) and a rice chitinase gene (chi11) were introduced into the spring wheat cultivar ’Bobwhite’ by co-transformation of the plasmids pGL2ubi-tlp (ubiquitin/tlp//CaMV 35S/hpt) and pAHG11 (CaMV 35S/chi11//ubiquitin/bar). The transformation was by biolistic bombardment. Bialaphos was used as the selection reagent. The integration and expression of the tlp, bar, chi11 and hpt genes were analyzed by Southern, Northern and Western blot analyses. The four transgenes co-segregated in the T1 progeny of the transgenic plant and were localized at the telomeric region of the chromosome 6A long arm by sequential N-banding and fluorescent in situ hybridization (FISH) using pAHG11 or pGL2ubi-tlp as the probes. Only the transgenes tlp and bar, under the control of the ubiquitin promoter-intron, were expressed. No expression of the chi11 and hpt genes, controlled by the CaMV 35S promoter, was detected in T1 plants. After inoculation with conidia of F. graminearum, the symptoms of scab developed significantly slower in transgenic plants of the T1, T2 and T3 generations expressing the tlp gene than in non-transformed control plants. This is the first report of enhanced resistance to F. graminearum in transgenic wheat plants with constitutive expression of TLP. Received: 15 December 1998 / Accepted: 30 January 1999  相似文献   

2.

Background  

The microbes Escherichia coli and Pichia pastoris are convenient prokaryotic and eukaryotic hosts, respectively, for the recombinant production of proteins at laboratory scales. A comparative study was performed to evaluate a range of constructs and process parameters for the heterologous intra- and extracellular expression of genes encoding the industrially relevant enzyme galactose 6-oxidase (EC 1.1.3.9) from the fungus Fusarium graminearum. In particular, the wild-type galox gene from F. graminearum, an optimized variant for E. coli and a codon-optimized gene for P. pastoris were expressed without the native pro-sequence, but with a His-tag either at the N- or the C-terminus of the enzyme.  相似文献   

3.
The filamentous plant pathogenic fungus Fusarium graminearum is one of the most important pathogens causing Fusarium head blight (FHB) in wheat in the Henan Province of China. Metconazole is among the demethylation inhibitor (DMI) fungicides with a higher inhibitory activity on the mycelial growth of F. graminearum. In 2016 and 2017, 119 single spore isolates of F. graminearum, prior to being exposed to metconazole, were recovered from 52 wheat fields near 11 cities in Henan Province. The inhibitory activity of metconazole on the mycelia of the Henan F. graminearum population was determined, and EC50 values were calculated. The range of EC50 values of the Henan F. graminearum population to metconazole was 0.0103 to 0.0775 μg/ml with an average EC50 value of 0.0293 ± 0.0114 μg/ml. The sensitivity frequency distribution curve presented a single peak in a narrow range. No cross-resistance was found between the DMI fungicide metconazole and the benzimidazole fungicide carbendazim or the cyanoacrylate fungicide phenamacril. Therefore, these sensitivity data could be used as the baseline of F. graminearum susceptibility to metconazole in the Henan Province and provide the basis for monitoring metconazole resistance in this area.  相似文献   

4.
5.
6.
7.
8.
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis–F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.  相似文献   

9.
Deoxynivalenol (DON) is a vital virulence factor of Fusarium graminearum, which causes Fusarium head blight (FHB). We recently found that validamycin A (VMA), an aminoglycoside antibiotic, can be used to control FHB and inhibit DON contamination, but its molecular mechanism is still unclear. In this study, we found that both neutral and acid trehalase (FgNTH and FgATH) are the targets of VMA in Fgraminearum, and the deficiency of FgNTH and FgATH reduces the sensitivity to VMA by 2.12- and 1.79-fold, respectively, indicating that FgNTH is the main target of VMA. We found FgNTH is responsible for vegetative growth, FgATH is critical to sexual reproduction, and both of them play an important role in conidiation and virulence in Fgraminearum. We found that FgNTH resided in the cytoplasm, affected the localization of FgATH, and positively regulated DON biosynthesis; however, FgATH resided in vacuole and negatively regulated DON biosynthesis. FgNTH interacted with FgPK (pyruvate kinase), a key enzyme in glycolysis, and the interaction was reduced by VMA; the deficiency of FgNTH affected the localization of FgPK under DON induction condition. Strains with a deficiency of FgNTH were more sensitive to demethylation inhibitor (DMI) fungicides. FgNTH regulated the expression level of FgCYP51A and FgCYP51B by interacting with FgCYP51B. Taken together, VMA inhibits DON biosynthesis by targeting FgNTH and reducing the interaction between FgNTH and FgPK, and synergizes with DMI fungicides against F. graminearum by decreasing FgCYP51A and FgCYP51B expression.  相似文献   

10.
Promoter shutoff is a general method for analyzing essential genes, but in the fungus Aspergillus oryzae, no tightly repressed promoters have been reported. To overcome the current limitations of conditional promoters, we examined sorbitol- and galactose-responsive genes using microarrays to identify regulatable genes with only minor physiological and genetic effects. We identified two sorbitol-induced genes (designated as sorA and sorB), cloned their promoters, and built a regulated egfp and brlA expression system. Growth medium-dependent enhanced green fluorescence protein (EGFP) fluorescence and conidiation were confirmed for egfp and brlA under the control of their respective promoters. We also used this shutoff system to regulate the essential rhoA, which demonstrated the expected growth inhibition under repressed growth conditions. Our new sorbitol promoter shutoff system developed can serve as a valuable new tool for essential gene analyses of filamentous fungi.  相似文献   

11.
One single pathogen Fusarium graminearum Schw. was inoculated to maize inbred lines 1,145 (Resistant) and Y331 (Susceptive), and their progenies of F1, F2 and BC1F1 populations. Field statistical data revealed that all of the F1 individuals were resistant to the disease and that the ratio of resistant plants to susceptive plants was 3:1 in the F2 population, and 1:1 in the BC1F1 population. The results revealed that a single dominant gene controls the resistance to F. graminearum Schw.. The resistant gene to F. graminearum Schw. was denominated as Rfg1 according to the standard principle of the nomenclature of the plant disease resistant genes. RAPD (randomly amplified polymorphic DNA) combined with BSA (bulked segregant analysis) analysis was carried out in the developed F2 and BC1F1 populations, respectively. Three RAPD products screened from the RAPD analysis with 820 Operon 10-mer primers showed the linkage relation with the resistant gene Rfg1. The three RAPD amplification products (OPD-201000, OPA-041100 and OPY-04900) were cloned and their copy numbers were determined. The results indicated that only OPY-04900 was a single-copy sequence. Then, OPY-04900 was used as a probe to map the Rfg1 gene with a RIL F7 mapping population provided by Henry Nguyen, which was developed from the cross S3×Mo17. Rfg1 was primarily mapped on chromosome 6 between the two linked markers OPY-04900 and umc21 (Bin 6.04–6.05). In order to confirm the primary mapping result, 25 SSR (simple sequence repeat) markers and six RFLP (restriction fragment length polymorphism) markers in the Rfg1 gene-encompassing region were selected, and their linkage relation with Rfg1 was analyzed in our F2 population. Results indicated that SSR marker mmc0241 and RFLP marker bnl3.03 are flanking the Rfg1 gene with a genetic distance of 3.0 cM and 2.0 cM, respectively. This is the first time to name and to map a single resistant gene of maize stalk rot through a single pathogen inoculation and molecular marker analysis.Communicated by H.F. Linskens  相似文献   

12.

Background  

B. subtilis is an important organism in the biotechnological application. The efficient expression system is desirable in production of recombinant gene products in B. subtilis. Recently, we developed a new inducible expression system in B. subtilis, which directed by B. subtilis maltose utilization operon promoter P glv . The system demonstrated high-level expression for target proteins in B. subtilis when induced by maltose. However, the system was markedly repressed by glucose. This limited the application of the system as a high-expression tool in biotechnology field. The aim of this study was to further improve the P glv promoter system and enhance its expression strength.  相似文献   

13.
A conditional negative selection marker is essential for high throughput insertional mutagenesis with any two-element transposon tagging system. Thetms2 gene encodes indoleacetic acid hydrolase (IAAH) which converts naphthaleneacetamide (NAM) to the potent auxin naphthaleneacetic acid, a phytotoxic derivative. This gene, under the control of the manopine synthase gene 2 promoter fromAgrobacterium tumefaciens and exogenously applied NAM, have been used effectively as a negative selector inAc/Ds insertional mutagenesis ofArabidopsis thaliana (Sundaresan et al., 1995). In this study we show thattms2 can also be used as a negative selector in rice. T1 transgenic seedlings expressing thistms2 gene under the control of themas2’ promoter showed significant reduction in shoot and root growth in the presence of 5–10 μM NAM under specified growth conditions compared to plants not containing this gene.  相似文献   

14.
Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that consists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-1) subunit genes under the regulation of Ptcu-1, a copper-responsive promoter. In these strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induction of cna-1 and cnb-1, while excess Cu2+ represses gene expression. Through analysis of these strains under repressing and inducing conditions, we found that the calcineurin is required for normal growth, asexual development and female fertility in N. crassa. Moreover, we isolated and analyzed cnb-1 mutant alleles generated by repeat-induced point mutation (RIP), with the results further supporting roles for calcineurin in growth and fertility in N. crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay system developed to study protein-protein interactions in N. crassa.  相似文献   

15.
Sexual spores (ascospores) of Fusarium graminearum, a homothallic ascomycetous fungus, are believed to be the primary inocula for epidemics of the diseases caused by this species in cereal crops. Based on the light requirement for the formation of fruiting bodies (perithecia) of F. graminearum under laboratory conditions, we explored whether photoreceptors play an important role in sexual development. Here, we evaluated the roles of three genes encoding putative photoreceptors [a phytochrome gene (FgFph) and two white collar genes (FgWc-1 and FgWc-2)] during sexual development in F. graminearum. For functional analyses, we generated transgenic strains lacking one or two genes from the self-fertile Z3643 strain. Unlike the wild-type (WT) and add-back strains, the single deletion strains (ΔFgWc-1 and ΔFgWc-2) produced fertile perithecia under constant light on complete medium (CM, an unfavorable medium for sexual development) as well as on carrot agar (a perithecial induction condition). The expression of mating-type (MAT) genes increased significantly in the gene deletion strains compared to the WT under both conditions. Deletion of FgFph had no significant effect on sexual development or MAT gene expression. In contrast, all of the deletion strains examined did not show significant changes in other traits such as hyphal growth, mycotoxin production, and virulence. A split luciferase assay confirmed the in vivo protein-protein interactions among three photoreceptors along with FgLaeA, a global regulator of secondary metabolism and fungal development. Introduction of an intact copy of the A. nidulans LreA and LreB genes, which are homologs of FgWc-1 and FgWc-2, into the ΔFgWc-1 and ΔFgWc-2 strains, respectively, failed to repress perithecia formation on CM in the gene deletion strains. Taken together, these results demonstrate that FgWc-1 and FgWc-2, two central components of the blue-light sensing system, negatively regulate sexual development in F. graminearum, which differs from the regulation pattern in A. nidulans.  相似文献   

16.
Striatin-interacting phosphatases and kinases (STRIPAKs) are evolutionarily conserved supramolecular complexes that control various important cellular processes such as signal transduction and development. However, the role of the STRIPAK complex in pathogenic fungi remains elusive. In this study, the components and function of the STRIPAK complex were investigated in Fusarium graminearum, an important plant-pathogenic fungus. The results obtained from bioinformatic analyses and the protein–protein interactome suggested that the fungal STRIPAK complex consisted of six proteins: Ham2, Ham3, Ham4, PP2Aa, Ppg1, and Mob3. Deletion mutations of individual components of the STRIPAK complex were created, and observed to cause a significant reduction in fungal vegetative growth and sexual development, and dramatically attenuae virulence, excluding the essential gene PP2Aa. Further results revealed that the STRIPAK complex interacted with the mitogen-activated protein kinase Mgv1, a key component in the cell wall integrity pathway, subsequently regulating the phosphorylation level and nuclear accumulation of Mgv1 to control the fungal stress response and virulence. Our results also suggested that the STRIPAK complex was interconnected with the target of rapamycin pathway through Tap42-PP2A cascade. Taken together, our findings revealed that the STRIPAK complex orchestrates cell wall integrity signalling to govern the fungal development and virulence of F. graminearum and highlighted the importance of the STRIPAK complex in fungal virulence.  相似文献   

17.
18.
19.
The membrane trafficking system is important for compartmentalization of the biosynthesis pathway and secretion of deoxynivalenol (DON) mycotoxin (a virulence factor) in Fusarium graminearum. Flippases are transmembrane lipid transporters and mediate a number of essential physiological steps of membrane trafficking, including vesicle budding, charging, and protein diffusion within the membrane. However, the roles of flippases in secondary metabolism remain unknown in filamentous fungi. Herein, we identified five flippases (FgDnfA, FgDnfB, FgDnfC1, FgDnfC2, and FgDnfD) in F. graminearum and established their specific and redundant functions in the development and pathogenicity of this phytopathogenic fungus. Our results demonstrate that FgDnfA is critical for normal vegetative growth while the other flippases are dispensable. FgDnfA and FgDnfD were found crucial for the fungal pathogenesis, and a remarkable reduction in DON production was observed in ΔFgDNFA and ΔFgDNFD. Deletion of the FgDNFB gene increased DON production to about 30 times that produced by the wild type. Further analysis showed that FgDnfA and FgDnfD have positive roles in the regulation of trichothecene (TRI) genes (TRI1, TRI4, TRI5, TRI6, TRI12, and TRI101) expression and toxisome reorganization, while FgDnfB acts as a negative regulator of DON synthesis. In addition, FgDnfB and FgDnfD have redundant functions in the regulation of phosphatidylcholine transport, and double deletion of FgDNFB and FgDNFD showed serious defects in fungal development, DON synthesis, and virulence. Collectively, our findings reveal the distinct and specific functions of flippase family members in F. graminearum and principally demonstrate that FgDnfA, FgDnfD, and FgDnfB have specific spatiotemporal roles during toxisome biogenesis.  相似文献   

20.
《Fungal biology》2020,124(11):932-939
Sclerotium rolfsii (teleomorph Athelia rolfsii) is one of the plant pathogenic basidiomycetes, which causes severe stem-rot disease in hundreds of plants and produces important metabolites, such as scleroglucan and TF-specific lectin. However, further molecular biological research on this filamentous fungus is severely plateaued out due to the lack of genetic methods. In this study, the A. tumefaciens strain LBA4404 harboring a binary vector containing the basta resistance gene fused with three reporters (DsRed, tdTomato, and GUSPlus) respectively, driven by the SrGPD promoter, was used for genetic transformation of S. rolfsii. The results showed that the three reporter genes were all effectively expressed in S. rolfsii. This study also showed that the intron of the SrGPD promoter is not necessary for transgene expression in this fungus. Besides, we showed that these reporters’ signals could be observed easily but in a short time window. The efficient Agrobacterium-mediated transformation system and the three reporter gene plasmids for S. rolfsii developed in this study are of significance in overcoming current limitations of no available transformation and genetic manipulation techniques in S. rolfsii, facilitating further genetic manipulations and gene function exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号