首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

The RTM-GWAS was chosen among five procedures to identify DTF QTL-allele constitution in a soybean NAM population; 139 QTLs with 496 alleles accounting for 81.7% of phenotypic variance were detected.

Abstract

Flowering date (days to flowering, DTF) is an ecological trait in soybean, closely related to its ability to adapt to areas. A nested association mapping (NAM) population consisting of four RIL populations (LM, ZM, MT and MW with M8206 as their common parent) was established and tested for their DTF under five environments. Using restriction-site-associated DNA sequencing the population was genotyped with SNP markers. The restricted two-stage multi-locus (RTM) genome-wide association study (GWAS) (RTM-GWAS) with SNP linkage disequilibrium block (SNPLDB) as multi-allele genomic markers performed the best among the five mapping procedures with software publicly available. It identified the greatest number of quantitative trait loci (QTLs) (139) and alleles (496) on 20 chromosomes covering almost all of the QTLs detected by four other mapping procedures. The RTM-GWAS provided the detected QTLs with highest genetic contribution but without overflowing and missing heritability problems (81.7% genetic contribution vs. heritability of 97.6%), while SNPLDB markers matched the NAM population property of multiple alleles per locus. The 139 QTLs with 496 alleles were organized into a QTL-allele matrix, showing the corresponding DTF genetic architecture of the five parents and the NAM population. All lines and parents comprised both positive and negative alleles, implying a great potential of recombination for early and late DTF improvement. From the detected QTL-allele system, 126 candidate genes were annotated and χ 2 tested as a DTF candidate gene system involving nine biological processes, indicating the trait a complex, involving several biological processes rather than only a handful of major genes.
  相似文献   

2.

Key message

The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding.

Abstract

The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was used for genetic characterization, candidate gene prediction, and genomic selection for optimal crosses in the germplasm population.
  相似文献   

3.
This study was undertaken to identify putative quantitative trait loci (QTLs) associated with days to flowering (DTF) and photoperiod response in rice. A population of 143 recombinant inbred lines derived from a cross between CO39 and Moroberekan was grown under greenhouse conditions and exposed to two different photoperiod regimes. DTF of individual plants was evaluated under 10 h and 14 h day lengths, and loci associated with photoperiod sensitivity were identified based on the delay in flowering under the 14 h photoperiod (DTF at 14 h minus DTF at 10 h). An RFLP data set consisting of 127 markers provided the basis for the QTL analysis. Both single marker and interval analysis were used and interactions between putative QTLs were estimated based on two-way ANOVA. Out of 15 QTLs associated with DTF, only 4 were identified as influencing the response to photoperiod. Interactions between flowering QTLs indicated the complex nature of the control of flowering in rice. The effectiveness of using a single recombinant inbred population to study a variety of complex phenotypes is discussed in relation to practical plant breeding.  相似文献   

4.

Key message

Eighty-six R1 QTLs accounting for 89.92% phenotypic variance in a soybean RIL population were identified using RTM-GWAS with SNPLDB marker which performed superior over CIM and MLM-GWAS with BIN/SNPLDB marker.

Abstract

A population (NJRIKY) composed of 427 recombinant inbred lines (RILs) derived from Kefeng-1?×?NN1138-2 (MGII?×?MGV, MG maturity group) was applied for detecting flowering date (R1) quantitative trait locus (QTL) system in soybean. From a low-depth re-sequencing (~?0.75?×), 576,874 SNPs were detected and organized into 4737 BINs (recombination breakpoint determinations) and 3683 SNP linkage disequilibrium blocks (SNPLDBs), respectively. Using the association mapping procedures “Restricted Two-stage Multi-locus Genome-wide Association Study” (RTM-GWAS), “Mixed Linear Model Genome-wide Association Study” (MLM-GWAS) and the linkage mapping procedure “Composite Interval Mapping” (CIM), 67, 36 and 10 BIN-QTLs and 86, 14 and 23 SNPLDB-QTLs were detected with their phenotypic variance explained (PVE) 88.70–89.92% (within heritability 98.2%), 146.41–353.62% (overflowing) and 88.29–172.34% (overflowing), respectively. The RTM-GWAS with SNPLDBs which showed to be more efficient and reasonable than the others was used to identify the R1 QTL system in NJRIKY. The detected 86 SNPLDB-QTLs with their PVE from 0.02 to 30.66% in a total of 89.92% covered 51 out of 104 R1 QTLs in 18 crosses in SoyBase and 26 out of 139 QTLs in a nested association mapping population, while the rest 29 QTLs were novel ones. From the QTL system, 52 candidate genes were annotated, including the verified gene E1, E2, E9 and J, and grouped into 3 categories of biological processes, among which 24 genes were enriched into three protein–protein interaction networks, suggesting gene networks working together. Since NJRIKY involves only MGII and MGV, the QTL/gene system among MG000–MGX should be explored further.
  相似文献   

5.

Background

Soybean (Glycine max) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. A genome-wide association study (GWAS) was conducted using a mixed linear model that involves both relative kinship and population structure.

Results

The linkage disequilibrium (LD) decayed slowly in soybean, and a substantial difference in LD pattern was observed between euchromatic and heterochromatic regions. A total of 27, 6, 18 and 27 loci for DTF, DTM, DFTM and PH were detected via GWAS, respectively. The Dt1 gene was identified in the locus strongly associated with both DTM and PH. Ten candidate genes homologous to Arabidopsis flowering genes were identified near the peak single nucleotide polymorphisms (SNPs) associated with DTF. Four of them encode MADS-domain containing proteins. Additionally, a pectin lyase-like gene was also identified in a major-effect locus for PH where LD decayed rapidly.

Conclusions

This study identified multiple new loci and refined chromosomal regions of known loci associated with DTF, DTM, DFTM and/or PH in soybean. It demonstrates that GWAS is powerful in dissecting complex traits and identifying candidate genes although LD decayed slowly in soybean. The loci and trait-associated SNPs identified in this study can be used for soybean genetic improvement, especially the major-effect loci associated with PH could be used to improve soybean yield potential. The candidate genes may serve as promising targets for studies of molecular mechanisms underlying the related traits in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1441-4) contains supplementary material, which is available to authorized users.  相似文献   

6.
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population‐scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population‐scaled recombination rate between Gossypium hirsutum and G. arboreum and sub‐genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome‐wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high‐recombination regions than were those of yield and early maturity traits. These results provide insights into the population‐scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.  相似文献   

7.
8.
The number of days from seedling emergence to flowering (DTF) is a major consideration in sunflower breeding programs. This is a complex trait determined by the genotype, environmental conditions and interactions. Photoperiod and temperature have major effects on DTF and could be important sources of genotype× environment interaction. The objectives of this study were to locate quantitative trait loci (QTLs) associated with growing degree days (GDD) to flowering and photoperiod (PP) response in an elite sunflower population. Two hundred and thirty five F2-generation plants and their F2:3 and F2:4 progenies of a single-cross population of two divergent inbred lines were evaluated in six environments (locations, years and sowing dates) with photoperiods known to elicit a PP response between the inbred lines. Detection of QTLs was facilitated with a genetic linkage map of 205 RFLP loci and composite interval mapping. The 205 restriction fragment length polymorphism (RFLP) loci covered 1380 cM and were arranged in 17 linkage groups, which is the haploid number of chromosomes in this species. The average interval size was 5.9 cM. Six QTLs in linkage groups A, B, F, I, J and L were associated with GDD to flowering and accounted for 76% of the genotypic variation in the mean environment. QTLs in linkage groups A and B accounted for 72% of the genetic variation. QTL×environment (QTL×E) interactions were highly significant for linkage groups A, B, F and J (P<0.01). QTLs in linkage groups A and B were highly dependent on PP. Also, QTL mapping of the ratio of the GDD required by a progeny to flower at a PP of 12.1 and 15.0 h, defined as the photoperiod response (PPR), suggested that alleles at QTLs in linkage groups A and B were responsive to PP. QTLs in linkage groups F and J showed QTL×E interaction but the LOD values were not associated with PP. QTL×E interactions for additive effects were highly significant (P<0.01) for linkage groups A, B and F. QTL×E interactions for QTLs with dominant effects were significant (P<0.01) for linkage groups A, B and J. The dominant effect of QTLs in linkage group B increased in environments with a longer PP. The knowledge of how these QTLs influence the GDD for flowering and how they interact with the environment will facilitate marker- assisted selection and backcross conversion of photoperiod-sensitive germplasm. Received: 7 February 2000 / Accepted: 13 June 2000  相似文献   

9.
This study was conducted to identify randomly amplified polymorphic DNA (RAPD) markers associated with quantitative trait loci (QTLs) conferring salt tolerance during germination in tomato. Germination response of an F2 population (2000 individuals) of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl+17.5 mM CaCl2 (water potential ca. –9.5 bars). Germination was scored visually as radicle protrusion at 6-h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerants and salt-sensitives) were selected. The selected individuals were genotyped for 53 RAPD markers and allele frequencies at each marker locus were determined. The linkage association among the markers was determined using a “Mapmaker” program. Trait-based marker analysis (TBA) identified 13 RAPD markers at eight genomic regions that were associated with QTLs affecting salt tolerance during germination in tomato. Of these genomic regions, five included favorable QTL alleles from LA716, and three included favorable alleles from UCT5. The approximate effects of individual QTLs ranged from 0.46 to 0.82 phenotypic standard deviation. The results support our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The identification of favorable QTLs in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these genotypes. Results from this study are discussed in relation to using marker-assisted selection in breeding for salt tolerance. Received: 16 June 1997 / Revision received: 11 August 1997 / Accepted: 2 September 1997  相似文献   

10.
The objective of this study was to dissect the genetic control of days to flowering (DTF) and photoperiod sensitivity (PS) into the various components including the main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions (QEs). Doubled haploid (DH) lines were produced from an F1 between two spring Brassica napus cultivars Hyola 401 and Q2. DTF of the DH lines and parents were investigated in two locations, one location with a short and the other with a long photoperiod regime over two years. PS was calculated by the delay in DTF under long day as compared to that under short day. A genetic linkage map was constructed that comprised 248 marker loci including SSR, SRAP, and AFLP markers. Further QTL analysis resolved the genetic components of flowering time and PS into the main-effect QTLs, epistatic QTLs, and QEs. A total of 7 main-effect QTLs and 11 digenic interactions involving 21 loci located on 13 out of the 19 linkage groups were detected for the two traits. Three main-effect QTLs and four pairs of epistatic QTLs were involved in QEs conferring DTF. One QTL on linkage group (LG) 18 was revealed to simultaneously affect DTF and PS and explain for the highest percentage of the phenotypic variation. The implications of the results for B. napus breeding have been discussed. The text was submitted by the authors in English.  相似文献   

11.
以中国的高油分自交系“高油”和欧洲高含油量品种“Sollux”的F1产生的282个株系组成的双二倍体(DH)群体为材料,在125个SSR标记座位构建的连锁图谱基础上,根据在中国和欧洲四个不同环境下的表型鉴定结果,采用混合线性模型基础上的QTL分析软件,对油菜3个重要农艺性状:株高,开花期和成熟期进行了数量性状基因座位(QTL)的联合定位分析,估测了这些QTL的加性、上位性以及与环境的互作效应。结果表明各性状均受多个加性、加加上位以及与环境互作的QTL控制。株高受多个QTL影响(12个位点具有加性或兼有环境互作效应,5个位点具有互作效应),以加性效应为主,加性效应总和可解释定位群体表型变异的75%左右,并多兼有上位性效应。12个主效QTL中,9个是“高油”等位基因相对“Sollux”有降低株高的作用,大多数加性×环境互作QTL的有效等位基因具有环境选择特异性。7个ae基因座位中,5个“高油”等位基因在杭州种植环境下,除一例外所有在德国环境下的互作基因座中,“Sollux”等位基因起着增加株高的作用,加加上位性主效总和为加性主效总和的三分之一。7个控制花期和8个控制成熟期的主效QTL中,分别有6个和5个是来自“高油”的等位基因相对“Sollux”具有提前开花和成熟的效应,这些QTL的效应总和占到性状表型变异的60%左右。5个位于第2和第12连锁群中的2个大效应QTL可能和已多次报导的VFN1和VFN3基因相近或相同。开花期和成熟期两性状均检测到显著的ae互作效应,双亲等位基因的效应在各环境下呈离散分布。位于14和19连锁群上的两个主效株高QTL同时也是控制开花期和油分含量的基因位点,因而利用这两个位点进行标记辅助筛选时要考虑到对油分含量的影响。控制成熟期的8个主效QTL中有3个同时也是控制开花期的基因座位,证实了开花期和成熟期高度正相关的遗传基础,两个生育性状均表现有较弱的QTL间加加上位互作,但以主效QTL的作用为主。  相似文献   

12.
This study was conducted to identify genomic regions (quantitative trait loci, QTLs) affecting salt tolerance during germination in tomato. Germination response of an F2 population of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl + 17.5 mM CaCl2 (water potential ca. –950 kPa). Germination was scored visually as radicle protrusion at 6 h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerant and salt-sensitive individuals) were selected. The selected individuals were genotyped at 84 genetic markers including 16 isozymes and 68 restriction fragment length polymorphisms (RFLPs). Trait-based marker analysis (TBA) which measures changes (differences) in marker allele frequencies in selected lines was used to identify marker-linked QTLs. Eight genomic regions were identified on seven tomato chromosomes bearing genes (QTLs) with significant effects on this trait. The results confirmed our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The salt-tolerant parent contributed favorable QTL alleles on chromosomes 1, 3, 9 and 12 whereas the salt sensitive parent contributed favorable QTL alleles on chromosomes 2, 7 and 8. The identification of favorable alleles in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these parental genotypes. The results can be used for marker-assisted selection and breeding of salt-tolerant tomatoes.  相似文献   

13.
The identification of genetic factors underlying the complex responses of plants to drought stress provides a solid basis for improving drought resistance. The stay-green character in sorghum (Sorghum bicolor L. Moench) is a post-flowering drought resistance trait, which makes plants resistant to premature senescence under drought stress during the grainfilling stage. The objective of this study was to identify quantitative trait loci (QTLs) that control premature senescence and maturity traits, and to investigate their association under post-flowering drought stress in grain sorghum. A genetic linkage map was developed using a set of recombinant inbred lines (RILs) obtained from the cross B35 × Tx430, which were scored for 142 restriction fragment length polymorphism (RFLP) markers. The RILs and their parental lines were evaluated for post-flowering drought resistance and maturity in four environments. Simple interval mapping identified seven stay-green QTLs and two maturity QTLs. Three major stay-green QTLs (SGA, SGD and SGG) contributed to 42% of the phenotypic variability (LOD 9.0) and four minor QTLs (SGB, SGI.1, SGI.2, and SGJ) significantly contributed to an additional 25% of the phenotypic variability in stay-green ratings. One maturity QTL (DFB) alone contributed to 40% of the phenotypic variability (LOD 10.0), while the second QTL (DFG) significantly contributed to an additional 17% of the phenotypic variability (LOD 4.9). Composite interval mapping confirmed the above results with an additional analysis of the QTL × Environment interaction. With heritability estimates of 0.72 for stay-green and 0.90 for maturity, the identified QTLs explained about 90% and 63% of genetic variability for stay-green and maturity traits, respectively. Although stay-green ratings were significantly correlated (r=0.22, P ≤ 0.05) with maturity, six of the seven stay-green QTLs were independent of the QTLs influencing maturity. Similarly, one maturity QTL (DFB) was independent of the stay-green QTLs. One stay-green QTL (SGG), however, mapped in the vicinity of a maturity QTL (DFG), and all markers in the vicinity of the independent maturity QTL (DFB) were significantly (P ≤ 0.1) correlated with stay-green ratings, confounding the phenotyping of stay-green. The molecular genetic analysis of the QTLs influencing stay-green and maturity, together with the association between these two inversely related traits, provides a basis for further study of the underlying physiological mechanisms and demonstrates the possibility of improving drought resistance in plants by pyramiding the favorable QTLs. Received: 10 October 1998 / Accepted: 12 July 1999  相似文献   

14.
We developed 21,499 genome-wide insertion–deletion (InDel) markers (2- to 54-bp in silico fragment length polymorphism) by comparing the genomic sequences of four (desi, kabuli and wild C. reticulatum) chickpea [Cicer arietinum (L.)] accessions. InDel markers showing 2- to 6-bp fragment length polymorphism among accessions were abundant (76.8%) in the chickpea genome. The physically mapped 7,643 and 13,856 markers on eight chromosomes and unanchored scaffolds, respectively, were structurally and functionally annotated. The 4,506 coding (23% large-effect frameshift mutations) and regulatory InDel markers were identified from 3,228 genes (representing 11.7% of total 27,571 desi genes), suggesting their functional relevance for trait association/genetic mapping. High amplification (97%) and intra-specific polymorphic (60–83%) potential and wider genetic diversity (15–89%) were detected by genome-wide 6,254 InDel markers among desi, kabuli and wild accessions using even a simpler cost-effective agarose gel-based assay. This signifies added advantages of this user-friendly genetic marker system for manifold large-scale genotyping applications in laboratories with limited infrastructure and resources. Utilizing 6,254 InDel markers-based high-density (inter-marker distance: 0.212 cM) inter-specific genetic linkage map (ICC 4958 × ICC 17160) of chickpea as a reference, three major genomic regions harboring six flowering and maturity time robust QTLs (16.4–27.5% phenotypic variation explained, 8.1–11.5 logarithm of odds) were identified. Integration of genetic and physical maps at these target QTL intervals mapped on three chromosomes delineated five InDel markers-containing candidate genes tightly linked to the QTLs governing flowering and maturity time in chickpea. Taken together, our study demonstrated the practical utility of developing and high-throughput genotyping of such beneficial InDel markers at a genome-wide scale to expedite genomics-assisted breeding applications in chickpea.  相似文献   

15.
张柯  叶镇清  乔传令 《昆虫知识》2003,40(5):432-436
羧酸酯酶 (carboxylesterases)的过量产生是库蚊Culexpipiens对有机磷杀虫剂 (OP)产生抗性的主要机制。由est 3和est 2组成的酯酶超级基因座 (estersuper locus)的基因扩增是引起酯酶基因扩增的主要遗传学基础。通过淀粉电泳研究了采自广州、佛山、郑州的库蚊野生蚊虫种群 ,发现在这些种群中存在着扩增等位基因重组现象。该现象可能是蚊虫受到杀虫药剂的选择压力、等位基因多样性和等位基因型频率的影响。这将提供一个研究抗性进化的自然模型。  相似文献   

16.
Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100–Satt460 and Sat_038–Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.  相似文献   

17.
There is accumulating evidence that LDL oxidation is essential for atherogenesis and antioxidants that prevent oxidation may either decelerate or reduce atherogenesis. Current study focused on the effect and mechanism of 3′,4′-dihydroxy-5,6,7,8-tetramethoxyflavone (DTF), a major metabolite of nobiletin (NOB, a citrus polymethoxylated flavone) on atherogenesis. We found DTF had stronger inhibitory activity than α-tocopherol on inhibiting Cu2+-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. Monocyte-to-macrophage differentiation plays a vital role in early atherogenesis. DTF (10–20 μM) dose-dependently attenuated differentiation along with the reduced gene expression of scavenger receptors, CD36 and SR-A, in both PMA- and oxidized low-density lipoprotein (oxLDL)-stimulated THP-1 monocytes. Furthermore, DTF treatment of monocytes and macrophages led to reduction of fluorescent DiI-acLDL and DiI-oxLDL uptake. In conclusion, at least three mechanisms are at work in parallel: DTF reduces LDL oxidation, attenuates monocyte differentiation into macrophage and blunts uptake of modified LDL by macrophage. The effect is different from that of NOB, from which DTF is derived. This study thus significantly enhanced our understanding on how DTF may be beneficial against atherogenesis.  相似文献   

18.
Several reports on mapping and introgression of quantitative trait loci (QTLs) for yield and related traits from wild species showed their importance in yield improvement. The aim of this study was to locate common major effect, consistent and precise yield QTLs across the wild species of rice by applying genome-wide QTL meta-analysis for their use in marker-aided selection (MAS) and candidate gene identification. Seventy-six yield QTLs reported in 11 studies involving inter-specific crosses were projected on a consensus map consisting of 699 markers. The integration of 11 maps resulted in a consensuses map of 1,676 cM. The number of markers ranged from 32 on chromosome 12 to 96 on chromosome 1. The order of markers between consensus map and original map was generally consistent. Meta-analysis of 68 yield QTLs resulted in 23 independent meta-QTLs on ten different chromosomes. Eight meta-QTLs were less than 1.3 Mb. The smallest confidence interval of a meta-QTL (MQTL) was 179.6 kb. Four MQTLs were around 500 kb and two of these correspond to a reasonably small genetic distance 4.6 and 5.2 cM, respectively, and suitable for MAS. MQTL8.2 was 326-kb long with a 35-cM interval indicating it was in a recombination hot spot and suitable for fine mapping. Our results demonstrate the narrowing down of initial yield QTLs by Meta-analysis and thus enabling short listing of QTLs worthy of MAS or fine mapping. The candidate genes shortlisted are useful in validating their function either by loss of function or over expression.  相似文献   

19.
This study was to determine the age at sexual maturity and the relationships between age and internal reproductive organs of Cosmopolites sordidus. Male banana weevils become sexually mature 18 days after emergence (DAE), that is after 2 weeks of adult eclosion, in spite of the fact that spermatogenesis is completed at emergence. A positive correlation exists between age and male internal organs, for example for mean testis diameter (r = .849, p ≤ .001), mean seminal vesicle diameter (r = .679, p ≤ .001), mean accessory gland length (r = .561, p ≤ .01) and mean accessory gland diameter (r = .498, p ≤ .05), respectively. Significant differences were recorded between sexually mature and immature weevils with respect to mean testis diameter (T = 4.471, p ≤ .001) and mean seminal vesicle diameter (T = 3.939, p ≤ .001), but not with mean accessory gland length and mean accessory gland diameter (T = 1.899 and 1.661). Male internal organs were visibly underdeveloped at emergence but became significantly enlarged and developed on attainment of sexual maturity. Female C. sordidus, on the other hand, are sexually mature at 5 DAE. There was also a strong, positive correlation between age of females and mean ovariole length (r = .656, p ≤ .001), and significant differences existed between mean ovariole lengths of sexually mature and immature females (T = 4.306, p ≤ .001). Increasing age of females witnessed progressive increases in ovariole lengths and developmental changes within female ovarioles and calyces. The findings made here may be helpful in Musa germplasm screening works, as weevils bred on susceptible cultivars may reveal similar results, while those bred on resistant ones may experience possible delays in their reproductive developments.  相似文献   

20.
 The organoleptic quality of fleshy fruits is in a large part defined by their composition of soluble sugars and organic acids. An F2 population issuing from a cross between two peach varieties, ‘Ferjalou Jalousia’, a non-acid peach, and ‘Fantasia’, an acid nectarine, was analysed over 2 successive years for agronomic characters and for molecular-marker (isoenzymes, RFLPs, RAPDs, IMAs and AFLPs) segregations. Blooming and maturity dates, as well as productivity, were noted for each tree. Four fruits per tree were analysed at maturity for fresh weight, colour, pH, titratable acidity, soluble-solids content (SSC), acid (malic, citric and quinic acids) and sugar (sucrose, glucose, fructose, sorbitol) contents. QTLs were detected for all fruit components analysed, except for fruit colour. The QTLs for nearly all components were present on two linkage groups. For productivity, fresh weight, pH, quinic acid, sucrose and sorbitol content, all the detected QTLs displayed the same effect as the parental phenotypes. By contrast, for maturity date, titratable acidity, malic and citric acids and fructose, some QTLs displayed the same effect as the parental phenotypes while others displayed the opposite effect. The fraction of the total variation in each trait throughout the population explained by the QTLs was very high and reached more than 90% for some characters. For most of the characters analysed, epistasis was observed between QTLs. Received: 10 October 1997 / Accepted: 18 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号