首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Introductions are a critical tool in the recovery of many imperiled species, yet adequate evaluation and development of best practices has lagged. Importantly, long-term post-introduction data are typically lacking, as well as suitable comparisons to wild populations to provide a baseline against which to assess performance. Here, we report on three experimental introductions of Crotalaria avonensis (Fabaceae), a federally endangered perennial herb that is narrowly endemic to scrub of the Lake Wales Ridge in peninsular Florida, U.S.A. We synthesize 10 years of post-introduction monitoring at both the introduced and a nearby, protected wild population to (1) develop best practices for conservation, and (2) evaluate the success of the introduction. First, our study identified best practices that included using transplants propagated from stem cuttings, as well as several factors that may increase seed germination such as habitat choice, seed burial, and litter addition. Second, during the 10 years following the introduction, population density in the introduced population was higher than in a nearby protected, wild population, and a comparison of vital rates revealed that this result was due to relatively high clonal and seedling recruitment rates in the introduced population. Furthermore, the source population, which occurred on unprotected lands, precipitously declined during this time period, further highlighting the importance of safeguarding plants from that population. We report that a new, growing population of C. avonensis has been established to date, with important implications for the species' conservation as well as how introductions are evaluated.  相似文献   

2.
    
Matrix population models are widely used to assess population status and to inform management decisions. Despite existing theories for building such models, model construction is often partially based on expert opinion. So far, model structure has received relatively little attention, although it may affect estimates of population dynamics. Here, we assessed the consequences of two published matrix structures (a 4 × 4 matrix based on expert opinion and a 10 × 10 matrix based on statistical modeling) for estimates of vital rates and stochastic population dynamics of the long-lived herb Astragalus scaphoides. We explored the ways in which choice of model structure alters the accuracy (i.e., mean) and precision (i.e., variance) of predicted population dynamics. We found that model structure had a negligible effect on the accuracy and precision of vital rates and stochastic stage distribution. However, the 10 × 10 matrix produced lower estimates of stochastic population growth rates than the 4 × 4 matrix, and more accurately predicted the observed trends in population abundance for three out of four study populations. Moreover, estimates of realized variation in population growth rate due to fluctuations in population stage structure over time were occasionally sensitive to matrix structure, suggesting differential roles of transient dynamics. Our study indicates that statistical modeling for choosing categories in matrix models might be preferable over expert opinion to accurately predict population trends and can provide a more objective way for model construction when the biological knowledge of the species is limited.  相似文献   

3.
4.
1. Understanding contributions of cohort effects to variation in population growth of fluctuating populations is of great interest in evolutionary biology and may be critical in contributing towards wildlife and conservation management. Cohort-specific contributions to population growth can be evaluated using age-specific matrix models and associated elasticity analyses. 2. We developed age-specific matrix models for naturally fluctuating populations of stoats Mustela erminea in New Zealand beech forests. Dynamics and productivity of stoat populations in this environment are related to the 3-5 year masting cycle of beech trees and consequent effects on the abundance of rodents. 3. The finite rate of increase (lambda) of stoat populations in New Zealand beech forests varied substantially, from 1.98 during seedfall years to 0.58 during post-seedfall years. Predicted mean growth rates for stoat populations in continuous 3-, 4- or 5-year cycles are 0.85, 1.00 and 1.13. The variation in population growth was a consequence of high reproductive success of females during seedfall years combined with low survival and fertility of females of the post-seedfall cohort. 4. Variation in population growth was consistently more sensitive to changes in survival rates both when each matrix was evaluated in isolation and when matrices were linked into cycles. Relative contributions to variation in population growth from survival and fertility, especially in 0-1-year-old stoats, also depend on the year of the cycle and the number of transitional years before a new cycle is initiated. 5. Consequently, management strategies aimed at reducing stoat populations that may be best during one phase of the beech seedfall cycle may not be the most efficient during other phases of the cycle. We suggest that management strategies based on elasticities of vital rates need to consider how population growth rates vary so as to meet appropriate economic and conservation targets.  相似文献   

5.
The impact of interspecific competition is usually measured by its effect upon plant growth, neglecting impacts upon other stages of the life cycle such as fecundity which have a direct influence upon individual fitness and the asymptotic population growth rate of a population (λ). We used parameterized matrix models for three perennial plant species grown with and without interspecific competition to illustrate how the methodology of Life Table Response Experiments (LTRE) can be used to link any change in population dynamics to changes in any part of the life cycle. Plants were herbaceous grassland species grown for two years in a field experiment at Rothamsted Experimental Station, England. Interspecific competition reduced λ by over 90% in all species. Survival and growth were slightly affected by competition whereas plant fecundity was greatly reduced. Nearly all of the observed difference in λ between the competition treatments was explained by the fecundity terms, and more precisely by a large difference in the number of seeds, and a high sensitivity of λ to the germination rate. Whereas most competition studies focus on the measurement of change in individual fitness, our study illustrates how informative it is to take account not only of the effect of competition upon vital rates but also of how different vital rates affect population growth rate.  相似文献   

6.
7.
    
Using long‐term mark–resighting data acquired over 27 years in continental France, we estimated demographic parameters and modelled the dynamics of a newly established population of Ospreys Pandion haliaetus using a life‐history model. We then performed prospective and retrospective analyses to estimate the sensitivity of the population growth rate to demographic parameters, and to quantify their contribution to the observed variation in abundance. The observed population growth rate was estimated at 1.150 (from one to 38 pairs in the period 1985–2011), and the stochastic population growth rate was estimated at 1.156. The number of fledglings per nest made the largest contribution to the variance of the observed population growth rate. Breeding productivity was stable across years. In contrast, the prospective analysis indicated that the sensitivity of the population growth rate was greatest for immigration and adult survival. Our results suggest that the increase of a new and recently established breeding population of Ospreys was mainly driven by local dynamics (high productivity and high proportion of breeding individuals), with no sign of density‐dependence except for juvenile survival. This probably reflects highly favourable conditions for breeding. Our results show that productivity can be a major driver in recovering raptor populations, and conservation work should aim to protect occupied nest‐sites and their surrounding habitat and to maintain highly favourable foraging areas in the vicinity of breeding sites.  相似文献   

8.
9.
    
Rare plant species have extremely narrow distributions that can be reduced to a single or few populations. The rare long-lived plant Kosteletzkya pentacarpos is one such species because only two extant localities are known in the western Mediterranean. In this study, we analyse the population dynamics over nine years of the only population known in north-east Spain, which is located at the Llobregat delta (Barcelona). We collected basic demographic data to build a transition matrix model. We computed population growth rates λ and their confidence intervals for each year of study. We conducted elasticity and variance decomposition analyses to determine the relative importance of vital rates to overall population dynamics. On average, the K. pentacarpos population exhibited an increasing dynamics. Survivorship of adult plants contributed the most to each λ, whereas temporal variance in fecundity and juvenile fate explained the observed variation in λ. Despite the increasing dynamics of K. pentacarpos , important reductions in fecundity resulting from biotic agents and recruitment owing to habitat limitations are constraints for population growth. We conclude that the knowledge generated in this long-term study should be used to create new K. pentacarpos populations at the Llobregat delta in order to minimize the risk of extinction following catastrophic events that are nearly impossible to predict.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 455–462.  相似文献   

10.
    
Individual plants can modify the microenvironment within their spatial neighborhood. However, the consequences of microenvironment modification for demography and species interactions remain unclear at the community scale. In a study of co-occurring alpine plants, we 1) determined the extent of species-specific microclimate modification by comparing temperature and soil moisture between vegetated and non-vegetated microsites for several focal species. We 2) determined how vital rates (survival, growth, fecundity) of all species varied in response to aboveground and belowground vegetative overlap with inter- and intraspecific neighbors as proxies for microenvironment modification. For 1), surface temperatures were buffered (lower maximums and higher minimums) and soil moisture was higher below the canopies of most species compared to non-vegetated areas. For 2), vegetative overlap predicted most vital rates, although the effect varied depending on whether aboveground or belowground overlap was considered. Vital rate response to microenvironment-modification proxies (vegetative overlap) was also frequently context dependent with respect to plant size and macroclimate. Microenvironment modification and spatial overlapping of individuals are key drivers of demography and species interactions in this alpine community.  相似文献   

11.
1. Precise estimates of demographic rates are key components of population models used to predict the effects of stochastic environmental processes, harvest scenarios and extinction probability. 2. We used a 12-year photographic identification library of whale sharks from Ningaloo Reef, Western Australia to construct Cormack-Jolly-Seber (CJS) model estimates of survival within a capture-mark-recapture (CMR) framework. Estimated survival rates, population structure and assumptions regarding age at maturity, longevity and reproduction frequency were combined in a series of age-classified Leslie matrices to infer the potential trajectory of the population. 3. Using data from 111 individuals, there was evidence for time variation in apparent survival (phi) and recapture probability (p). The null model gave a phi of 0.825 (95% CI: 0.727-0.893) and p = 0.184 (95% CI: 0.121-0.271). The model-averaged annual phi ranged from 0.737 to 0.890. There was little evidence for a sex effect on survival. 4. Using standardized total length as a covariate in the CMR models indicated a size bias in phi. Ignoring the effects of time, a 5-m shark has a phi = 0.59 and a 9 m shark has phi = 0.81. 5. Of the 16 model combinations considered, 10 (63%) indicated a decreasing population (lambda < 1). For models based on age at first reproduction (alpha) of 13 years, the mean age of reproducing females at the stable age distribution (A) ranged from 15 to 23 years, which increased to 29-37 years when alpha was assumed to be 25. 6. All model scenarios had higher total elasticities for non-reproductive female survival [E(s(nr))] compared to those for reproductive female survival [E(s(r))]. 7. Assuming relatively slow, but biologically realistic, vital rates (alpha = 25 and biennial reproduction) and size-biased survival probabilities, our results suggest that the Ningaloo Reef population of whale sharks is declining, although more reproductive data are clearly needed to confirm this conclusion. Combining relatively precise survival estimates from CMR studies with realistic assumptions of other vital rates provides a useful heuristic framework for determining the vulnerability of large oceanic predators for which few direct data exist.  相似文献   

12.
    
Dynamics of ramer and genet populations were analyzed by use of stochastic matrix models. Based on field data, population development and extinction rates during 50 simulated years were estimated for ramet populations of three speciesPotentilla anserina, Rubus saxatilis andLinnaea borealis. Only small initial populations (below 125–250 ramets), experienced a detectable risk of extinction within this time interval. ForP. anserina andR. saxatilis, population increase occurred in some simulations despite negative average growth rates. A model for stochastic genet dynamics was constructed by combining field data and hypothesized parameter values. Growth rate and population structure were insensitive to variation in disturbance intensity and frequency, whereas variation in recruitment affected population structure but only to a minor extent growth rate. Decreasing recruitment causes extinction of genet populations, but the time-scale for the decline is in the magnitude of centuries for initial genet populations of about 1000 individuals. Dynamics of genets in clonal plants thus incorporate processes occurring on widely different scales. Some implications of the results for models of population dynamics in long-lived clonal plants are discussed.  相似文献   

13.
    
Age‐ and sex‐specific survival estimates are crucial to understanding important life history characteristics, and variation in these estimates can be a key driver of population dynamics. When estimating survival using Cormack–Jolly–Seber (CJS) models, emigration is typically unknown but confounded with apparent survival. Consequently, especially for populations or age classes with high dispersal rates, apparent survival estimates are often biased low and temporal patterns in survival might be masked when site fidelity varies temporally. We used 9 years of annual mark–recapture data to estimate age‐, sex‐, and time‐specific apparent survival of Humboldt''s flying squirrels (Glaucomys oregonensis) and Townsend''s chipmunks (Neotamias townsendii). For Humboldt''s flying squirrels, these estimates support a small body of research investigating potential variation in survival among age and sex classes, but age‐ and sex‐specific survival has not been evaluated for Townsend''s chipmunks. We also quantified the effects of age‐ and sex‐specific emigration on confounded estimates of apparent survival. Our estimates of juvenile flying squirrel survival were high relative to other small mammal species and estimates for both species were variable among years. We found survival differed moderately among age and sex classes for Humboldt''s flying squirrels, but little among age and sex classes for Townsend''s chipmunks, and that the degree to which emigration confounded apparent survival estimates varied substantially among years. Our results demonstrate that emigration can influence commonly used estimates of apparent survival. Unadjusted estimates confounded the interpretation of differences in survival between age and sex classes and masked potential temporal patterns in survival because the magnitude of adjustment varied among years. We conclude that apparent survival estimators are robust during some time periods; however, when emigration rates vary in time, the effects of emigration should be carefully considered and accounted for.  相似文献   

14.
    
To design feasible conservation and management policies for wild species, it is critical to understand the effects of periodic disturbances, be they natural or anthropogenic. The Caribbean Basin is characterized by high cyclonic activity that has a strong impact on the demography and population dynamics of many taxa, including epiphytic orchids. We conducted a 5‐yr study of rare ghost orchid demography, Dendrophylax lindenii, to assess the stability of a protected population of this species in Cuba. Using both stochastic and deterministic integral projection models, we found that mean annual population growth rates are negative (λ = 0.975). However, we found both population growth rate and extinction risk are highly sensitive to survival rates and reproduction, a difficult to quantify rate for many orchids including our study species. While this species is fairly long‐lived, its relatively slow increase in annual survival with increasing size may reflect the lack of a protected (i.e., subterranean) storage organ—a life‐history trait that may typify other epiphytic species and increase susceptibility to disturbance events. Hurricanes, which are predicted to increase in frequency as a result of climate change, dramatically increase adult mortality. Simulations of these effects indicate that hurricanes and similar disturbances could result in near certain extinction in short time horizons (25 yr) if their annual probability of occurrence exceeds 14 percent. These results suggest a need to better quantify recruitment rates, as well as the sensitivity of population dynamics of this and other orchid species to hurricanes and other periodic disturbances.  相似文献   

15.
16.
In populations of the Gigartinaceae (Rhodophyta), gametophytes often predominate numerically over tetrasporophytes. Several hypotheses have been proposed to explain this dominance, based on the usually implicit assumption that the stable ratio between gametophytes and tetrasporophytes (G:T ratio) should be 1 if both reproductive phases are ecologically similar. We developed demographic models to test this assumption, for which we considered that both phases are ecologically similar. Defining ecologic similarity for most demographic rates is relatively straightforward, except for rates of spore output. The first set of models considered the same spore output per thallus of both phases as representing ecologic similarity. Model iterations led to stable G:T ratios of 1 for triennial and for perennial thalli, regardless of the initial G:T ratio, but not for annual thalli with initial G:T ratios different from 1. However, equal spore output may not represent ecologic similarity, due to size differences between carpospores and tetraspores. The second set of models considered the lowest possible spore output for each phase, according to the life history of this family: only one carposporangium, with one carpospore, is produced from every two gametophytes and only one tetrasporangium, with four tetraspores, is produced by every tetrasporophyte. Model iterations led to stable G:T ratios of 2.8 for most cases, a ratio of 1 being obtained only every 2 years for annual thalli with an initial G:T ratio of 1. Increasing absolute spore output, without altering the relative output between phases and incorporating density-independent mortality through a matrix model, given the same mortality rate for both phases, did not modify results. We suggest that the combination of both modeling and field research may uncover more rapidly than otherwise the most relevant ecologic differences between phases, if any, that underlie the G:T ratio observed for a given population.  相似文献   

17.
Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change.  相似文献   

18.
1. Density dependence may act at several stages in an organisms life-cycle (e.g. on mortality, fecundity, etc.), but not all density-dependent processes necessarily regulate population size. In this paper I use a density manipulation experiment to determine the effects of density on the transition rates between different size classes of the clonal zoanthid Palythoa caesia Dana 1846. I then formulate a density-dependent matrix model of population dynamics of Palythoa , and perform a series of sensitivity analyses on the model to determine at what stage in the life-cycle regulation acts.
2. Seven of the 16 transition probabilities decreased with density, most of them being shrinkage (due to loss of tissue or fission) and stasis (the self–self transition) of medium and large colonies. The only probability to increase was for the stasis of large colonies. Recruitment was quadratically dependent on density, peaking at intermediate densities.
3. Equilibrium cover in the model was 84% and was reached in ≈40 years. To determine which density-dependent transitions were involved in population regulation, the strength of density dependence was varied in each independently. This sensitivity analysis showed that only changes in the probabilities of large colonies remaining large and producing medium colonies, were regulating.
4. These results suggest that regulation is primarily acting on fission of large colonies to produce intermediate-sized colonies, in combination with size specific growth rates. Fission rates decrease greatly with density, resulting in a greater proportion of large colonies at high densities and large colonies grow more slowly than small. Overall, this behaviour is very similar to that of clonal plants which have a phalanx type life history.  相似文献   

19.
Stochastic matrix models are frequently used by conservation biologists to measure the viability of species and to explore various management actions. Models are typically parameterized using two or more sets of estimated transition rates between age/size/stage classes. While standard methods exist for analyzing a single set of transition rates, a variety of methods have been employed to analyze multiple sets of transition rates. We review applications of stochastic matrix models to problems in conservation and use simulation studies to compare the performance of different analytic methods currently in use. We find that model conclusions are likely to be robust to the choice of parametric distribution used to model vital rate fluctuations over time. However, conclusions can be highly sensitive to the within-year correlation structure among vital rates, and therefore we suggest using analytical methods that provide a means of conducting a sensitivity analysis with respect to correlation parameters. Our simulation results also suggest that the precision of population viability estimates can be improved by using matrix models that incorporate environmental covariates in conjunction with experiments to estimate transition rates under a range of environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号