首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triticeae species (including wheat, barley and rye) have huge and complex genomes due to polyploidization and a high content of transposable elements (TEs). TEs are known to play a major role in the structure and evolutionary dynamics of Triticeae genomes. During the last 5 years, substantial stretches of contiguous genomic sequence from various species of Triticeae have been generated, making it necessary to update and standardize TE annotations and nomenclature. In this study we propose standard procedures for these tasks, based on structure, nucleic acid and protein sequence homologies. We report statistical analyses of TE composition and distribution in large blocks of genomic sequences from wheat and barley. Altogether, 3.8 Mb of wheat sequence available in the databases was analyzed or re-analyzed, and compared with 1.3 Mb of re-annotated genomic sequences from barley. The wheat sequences were relatively gene-rich (one gene per 23.9 kb), although wheat gene-derived sequences represented only 7.8% (159 elements) of the total, while the remainder mainly comprised coding sequences found in TEs (54.7%, 751 elements). Class I elements [mainly long terminal repeat (LTR) retrotransposons] accounted for the major proportion of TEs, in terms of sequence length as well as element number (83.6% and 498, respectively). In addition, we show that the gene-rich sequences of wheat genome A seem to have a higher TE content than those of genomes B and D, or of barley gene-rich sequences. Moreover, among the various TE groups, MITEs were most often associated with genes: 43.1% of MITEs fell into this category. Finally, the TRIM and copia elements were shown to be the most active TEs in the wheat genome. The implications of these results for the evolution of diploid and polyploid wheat species are discussed. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

2.
3.
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

4.
We compared the codon usage of sequences of transposable elements (TEs) with that of host genes from the species Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae, and Homo sapiens. Factorial correspondence analysis showed that, regardless of the base composition of the genome, the TEs differed from the genes of their host species by their AT-richness. In all species, the percentage of A + T on the third codon position of the TEs was higher than that on the first codon position and lower than that in the noncoding DNA of the genomes. This indicates that the codon choice is not simply the outcome of mutational bias but is also subject to selection constraints. A tendency toward higher A + T on the third position than on the first position was also found in the host genes of A. thaliana, C. elegans, and S. cerevisiae but not in those of D. melanogaster and H. sapiens. This strongly suggests that the AT choice is a host-independent characteristic common to all TEs. The codon usage of TEs generally appeared to be different from the mean of the host genes. In the AT-rich genomes of Arabidopsis thaliana, Caenorhabditis elegans, and Saccharomyces cerevisiae, the codon usage bias of TEs was similar to that of weakly expressed genes. In the GC-rich genome of D. melanogaster, however, the bias in codon usage of the TEs clearly differed from that of weakly expressed genes. These findings suggest that selection acts on TEs and that TEs may display specific behavior within the host genomes. Received: 2 May 2001 / Accepted: 29 October 2001  相似文献   

5.
We sequenced five BAC clones of Brassica oleracea doubled haploid ‘Early Big' broccoli containing major genes in the aliphatic glucosinolate pathway, and comparatively analyzed them with similar sequences in A. thaliana and B. rapa. Additionally, we included in the analysis published sequences from three other B. oleracea BAC clones and a contig of this species corresponding to segments in A. thaliana chromosomes IV and V. A total of 2,946 kb of B. oleracea, 1,069 kb of B. rapa sequence and 2,607 kb of A. thaliana sequence were compared and analyzed. We found conserved collinearity for gene order and content restricted to specific chromosomal segments, but breaks in collinearity were frequent resulting in gene absence likely not due to gene loss but rearrangements. B. oleracea has the lowest gene density of the three species, followed by B. rapa. The genome expansion of the Brassica species, B. oleracea in particular, is due to larger introns and gene spacers resulting from frequent insertion of DNA transposons and retrotransposons. These findings are discussed in relation to the possible origin and evolution of the Brassica genomes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A 454 sequencing snapshot was utilised to investigate the genome composition and nucleotide diversity of transposable elements (TEs) for several Triticeae taxa, including Triticum aestivum, Hordeum vulgare, Hordeum spontaneum and Secale cereale together with relatives of the A, B and D genome donors of wheat, Triticum urartu (A), Aegilops speltoides (S) and Aegilops tauschii (D). Additional taxa containing the A genome, Triticum monococcum and its wild relative Triticum boeoticum, were also included. The main focus of the analysis was on the genomic composition of TEs as these make up at least 80% of the overall genome content. Although more than 200 TE families were identified in each species, approximately 50% of the overall genome comprised 12–15 TE families. The BARE1 element was the largest contributor to all genomes, contributing more than 10% to the overall genome. We also found that several TE families differ strongly in their abundance between species, indicating that TE families can thrive extremely successfully in one species while going virtually extinct in another. Additionally, the nucleotide diversity of BARE1 populations within individual genomes was measured. Interestingly, the nucleotide diversity in the domesticated barley H. vulgare cv. Barke was found to be twice as high as in its wild progenitor H. spontaneum, suggesting that the domesticated barley gained nucleotide diversity from the addition of different genotypes during the domestication and breeding process. In the rye/wheat lineage, sequence diversity of BARE1 elements was generally higher, suggesting that factors such as geographical distribution and mating systems might play a role in intragenomic TE diversity.  相似文献   

7.
A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. in situ hybridization experiments showed dispersed organization of the sequences over all chromosomes of H. vulgare and the wild barley species H. bulbosum, H. marinum and H. murinum. Southern blot hybridization revealed different levels of polymorphism among barley species and the RFLP data were used to generate a phylogenetic tree for the genus Hordeum. Our data are in a good agreement with the classification system which suggests the division of the genus into four major groups, containing the genomes I, X, Y, and H. However, our investigation also supports previous molecular studies of barley species where the unique position of H. bulbosum has been pointed out. In our experiments, H. bulbosum generally had hybridization patterns different from those of H. vulgare, although both carry the I genome. Based on our results we present a hypothesis concerning the possible origin and phylogeny of the polyploid barley species H. secalinum, H. depressum and the H. brachyantherum complex.  相似文献   

8.
The goal of this study was to assess the extent to which transposable elements (TEs) have contributed to protein-coding regions in Arabidopsis thaliana. To do this, we first characterized the extent of chimeric TE-gene constructs. We compared a genome-wide TE database to genomic sequences, annotated coding regions, and EST data. The comparison revealed that 7.8% of expressed genes contained a region with close similarity to a known TE sequence. Some groups of TEs, such as helitrons, were underrepresented in exons relative to their genome-wide distribution; in contrast, Copia-like and En/Spm-like sequences were overrepresented in exons. These 7.8% percent of genes were enriched for some GO-based functions, particularly kinase activity, and lacking in other functions, notably structural molecule activity. We also examined gene family evolution for these genes. Gene family information helped clarify whether the sequence similarity between TE and gene was due to a TE contributing to the gene or, instead, the TE co-opting a portion of the gene. Most (66%) of these genes were not easily assigned to a gene family, and for these we could not infer the direction of the relationship between TE and gene. For the remainder, where appropriate, we built phylogenetic trees to infer the direction of the TE-gene relationship by parsimony. By this method, we verified examples where TEs contributed to expressed proteins. Our results are undoubtedly conservative but suggest that TEs may have contributed small protein segments to as many as 1.2% of all expressed, annotated A. thaliana genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Grain hardness is an important factor affecting end-use quality in wheat. Mutations of the puroindoline genes, which are located on chromosome 5DS, control a majority of grain texture variations. Hordoindoline genes, which are the puroindoline gene homologs in barley, are located on chromosome 5HS and are also responsible for grain texture variation. In this study, we used three types of wheat–barley species (Hordeum vulgare, H. vulgare ssp. spontaneum, and H. chilense) chromosome addition lines and studied the effect of chromosome 5H of these species on wheat grain characteristics. The 5H chromosome addition lines showed significantly lower grain hardness and higher grain weight than the corresponding wheat parents. The effect of enhancing grain softness was largest in the wheat–H. chilense line regardless of having an increase in grain weight similar to those in the wheat–H. vulgare and wheat–H. spontaneum lines. Our results indicated that chromosome 5H of the Hordeum species plays a role in enhancing grain softness and increasing grain weight in the wheat genetic background, and the extent of effect on grain hardness depends on the type of Hordeum species. Protein analysis of hordoindolines indicated that profiles of 2D-electrophoresis of hordoindolines were different among Hordeum species and hordoindolines in the addition lines appeared to be most abundant in wheat–H. chilense line. The differences in enhancing grain softness among the Hordeum species might be attributed to the quantity of hordoindolines expressed in the 5H chromosome addition lines. These results suggested that the barley hordoindolines located on chromosome 5HS play a role in reducing grain hardness in the wheat genetic background.  相似文献   

10.
Numerous hybrid and polypoid species are found within the Triticeae. It has been suggested that the H subgenome of allopolyploid Elymus (wheatgrass) species originated from diploid Hordeum (barley) species, but the role of hybridization between polyploid Elymus and Hordeum has not been studied. It is not clear whether gene flow across polyploid Hordeum and Elymus species has occurred following polyploid speciation. Answering these questions will provide new insights into the formation of these polyploid species, and the potential role of gene flow among polyploid species during polyploid evolution. In order to address these questions, disrupted meiotic cDNA1 (DMC1) data from the allopolyploid StH Elymus are analyzed together with diploid and polyploid Hordeum species. Phylogenetic analysis revealed that the H copies of DMC1 sequence in some Elymus are very close to the H copies of DMC1 sequence in some polyploid Hordeum species, indicating either that the H genome in theses Elymus and polyploid Hordeum species originated from same diploid donor or that gene flow has occurred among them. Our analysis also suggested that the H genomes in Elymus species originated from limited gene pool, while H genomes in Hordeum polyploids have originated from broad gene pools. Nucleotide diversity (π) of the DMC1 sequences on H genome from polyploid species (π = 0.02083 in Elymus, π = 0.01680 in polyploid Hordeum) is higher than that in diploid Hordeum (π = 0.01488). The estimates of Tajima''s D were significantly departure from the equilibrium neutral model at this locus in diploid Hordeum species (P<0.05), suggesting an excess of rare variants in diploid species which may not contribute to the origination of polyploids. Nucleotide diversity (π) of the DMC1 sequences in Elymus polyploid species (π = 0.02083) is higher than that in polyploid Hordeum (π = 0.01680), suggesting that the degree of relationships between two parents of a polyploid might be a factor affecting nucleotide diversity in allopolyploids.  相似文献   

11.
Molluscs in general and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. Here, we determined the mitochondrial genomes of two scallops Argopecten irradians and Chlamys farreri. The complete mitochondrial genome of A. irradians is 16,211 nts in length and the nearly complete mitochondrial genome of C. farreri is 20,789 nts in length. Both of the genomes contain 35 genes including 12 protein-coding genes, 2 ribosomal RNAs, and 21 transfer RNAs. In contrast to the typical animal mitochondrial genome, both of them lack one protein-coding gene atp8 and two trnSs, but show an additional copy of trnF in A. irradians and of trnM in C. farreri, respectively. Gene order and genome content were compared among the four sequenced scallops. Gene arrangement of C. farreri closely resembles that of Mizuhopecten yessoensis. However, two genomes of C. farreri and A. irradians show only three small identical gene blocks and two genomes of A. irradians and Placopecten magellanicus share only one gene block. Comparison of the gene arrangement demonstrated that the four scallops share few identical gene blocks although they belong to the same family. This feature is seldom observed in Metazoa, even in other molluscan classes. The dramatic gene rearrangement often occurs in bivalves, especially in marine bivalves. In addition, comparisons of genomic character among bivalves are also presented.  相似文献   

12.
13.
14.
Genome relationships between the genera Leymus Hochst., PsathyrostachysNevski and Hordeum L. (Poaceae, Triticeae) were investigatedby fluorescent in situ hybridization using both total genomicDNA and cloned DNA sequences as probes. In hybrids between speciesof Hordeum and Leymus there was a clear differentiation betweenthe H genomes of Hordeum species and the genomes of Leymus speciesafter probing with genomic Hordeum or Leymus DNA. Chromosomesof species of Leymus and Psathyrostachys were also differentiatedby subtelomeric heterochromatic segments or by negative bandsalong their length. The number and location of 18S-5·8S-26SrRNA genes varied between the investigated genera. Unusually,L. angustus and P. stoloniformis rDNA sites were localized onboth ends of some chromosomes. Interphase nuclei of the Hordeumx Leymus hybrids had groups of chromosomes from both parentalgenomes in discrete, non-intermixed domains.Copyright 1994,1999 Academic Press Taxonomy, evolution, molecular evolution, repetitive DNA, rDNA sites, in situ hybridization, Triticeae, Leymus, Hordeum, Psathyrostachys  相似文献   

15.
In cultivated barley (Hordeum vulgare ssp. vulgare), six-rowed spikes produce three times as many seeds per spike as do two-rowed spikes. The determinant of this trait is the Mendelian gene vrs1, located on chromosome 2H, which is syntenous with rice (Oryza sativa) chromosomes 4 and 7. We exploited barley–rice micro-synteny to increase marker density in the vrs1 region as a prelude to its map-based cloning. The rice genomic sequence, covering a 980 kb contig, identified barley ESTs linked to vrs1. A high level of conservation of gene sequence was obtained between barley chromosome 2H and rice chromosome 4. A total of 22 EST-based STS markers were placed within the target region, and the linear order of these markers in barley and rice was identical. The genetic window containing vrs1 was narrowed from 0.5 to 0.06 cM, which facilitated covering the vrs1 region by a 518 kb barley BAC contig. An analysis of the contig sequence revealed that a rice Vrs1 orthologue is present on chromosome 7, suggesting a transposition of the chromosomal segment containing Vrs1 within barley chromosome 2H. The breakdown of micro-collinearity illustrates the limitations of synteny cloning, and stresses the importance of implementing genomic studies directly in the target species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The barley mutant allele sdw3 confers a gibberellin-insensitive, semi-dwarf phenotype with potential for breeding of new semi-dwarfed barley cultivars. Towards map-based cloning, sdw3 was delimited by high-resolution genetic mapping to a 0.04 cM interval in a “cold spot” of recombination of the proximal region of the short arm of barley chromosome 2H. Extensive synteny between the barley Sdw3 locus (Hvu_sdw3) and the orthologous regions (Osa_sdw3, Sbi_sdw3, Bsy_sdw3) of three other grass species (Oryza sativa, Sorghum bicolor, Brachypodium sylvaticum) allowed for efficient synteny-based marker saturation in the target interval. Comparative sequence analysis revealed colinearity for 23 out of the 38, 35, and 29 genes identified in Brachypodium, rice, and Sorghum, respectively. Markers co-segregating with Hvu_sdw3 were generated from two of these genes. Initial attempts at chromosome walking in barley were performed with seven orthologous gene probes which were delimiting physical distances of 223, 123, and 127 kb in Brachypodium, rice, and Sorghum, respectively. Six non-overlapping small bacterial artificial chromosome (BAC) clone contigs (cumulative length of 670 kb) were obtained, which indicated a considerably larger physical size of Hvu_sdw3. Low-pass sequencing of selected BAC clones from these barley contigs exhibited a substantially lower gene frequency per physical distance and the presence of additional non-colinear genes. Four candidate genes for sdw3 were identified within barley BAC sequences that either co-segregated with the gene sdw3 or were located adjacent to these co-segregating genes. Identification of genic sequences in the sdw3 context provides tools for marker-assisted selection. Eventual identification of the actual gene will contribute new information for a basic understanding of the mechanisms underlying growth regulation in barley.  相似文献   

17.
Recombination rate is heterogeneous across the genome of various species and so are genetic diversity and differentiation as a consequence of linked selection. However, we still lack a clear picture of the underlying mechanisms for regulating recombination. Here we estimated fine‐scale population recombination rate based on the patterns of linkage disequilibrium across the genomes of multiple populations of two closely related flycatcher species (Ficedula albicollis and F. hypoleuca). This revealed an overall conservation of the recombination landscape between these species at the scale of 200 kb, but we also identified differences in the local rate of recombination despite their recent divergence (<1 million years). Genetic diversity and differentiation were associated with recombination rate in a lineage‐specific manner, indicating differences in the extent of linked selection between species. We detected 400–3,085 recombination hotspots per population. Location of hotspots was conserved between species, but the intensity of hotspot activity varied between species. Recombination hotspots were primarily associated with CpG islands (CGIs), regardless of whether CGIs were at promoter regions or away from genes. Recombination hotspots were also associated with specific transposable elements (TEs), but this association appears indirect due to shared preferences of the transposition machinery and the recombination machinery for accessible open chromatin regions. Our results suggest that CGIs are a major determinant of the localization of recombination hotspots, and we propose that both the distribution of TEs and fine‐scale variation in recombination rate may be associated with the evolution of the epigenetic landscape.  相似文献   

18.
该研究基于叶绿体基因组数据,对桃金娘目(6科44属97种)及其近缘类群(牻牛儿苗目2科5属25种)的系统发育关系进行了分析.结果表明:(1)桃金娘目基因组大小为152~171 kb,包括的蛋白质编码基因数目为74~90个;牻牛儿苗目基因组大小为116~242 kb,包括的蛋白质编码基因数目为75~132个.(2)对比叶...  相似文献   

19.

Transposable elements (TEs) have long been considered junk DNA; however, the availability of genome sequences and the growth of omics databases have accelerated the study of TEs, and they are now considered evolutionary signatures. TEs, essential genetic elements in plant genomes, can move around the genome by either “cut-paste” (DNA transposons) or “copypaste” mechanisms (RNA transposons). TEs often affect host genome size and interact with host genes, resulting in altered gene expression and regulatory networks. Several genes have been identified to be influenced/modified by the action of TEs. TEs have diverse structures and functions. Plants are capable of using TEs as promoters and enhancers to drive epigenetic mechanisms in a tissue-specific manner. However, our knowledge about TEs remains poor despite extensive research in plants. Plant physiological functions associated with TEs have been challenging to analyse due to a lack of focused research. Another limitation is the lack of sufficient genetic information. The different functions displayed by plant genomes are genetically regulated, which opens up opportunities in areas such as genomic evolution and epigenetic modification. Indeed, understanding the contribution of TEs in the plant genome is indispensable to assess the diversity of evolutionary adaptability in plant taxa. In this study, we review the applications of TEs and discuss the value of genetic information in the plant genome. Genomic information about TEs has a significant value in high throughput research, including forward and reverse genetics. We discuss current strategies in using TEs for the genetic dissection of plant genomes. This review covers opportunities to use different TEs databases to increase the productivity of economically important plants for sustainable development

  相似文献   

20.
Localizing triplet periodicity in DNA and cDNA sequences   总被引:1,自引:0,他引:1  

Background  

The protein-coding regions (coding exons) of a DNA sequence exhibit a triplet periodicity (TP) due to fact that coding exons contain a series of three nucleotide codons that encode specific amino acid residues. Such periodicity is usually not observed in introns and intergenic regions. If a DNA sequence is divided into small segments and a Fourier Transform is applied on each segment, a strong peak at frequency 1/3 is typically observed in the Fourier spectrum of coding segments, but not in non-coding regions. This property has been used in identifying the locations of protein-coding genes in unannotated sequence. The method is fast and requires no training. However, the need to compute the Fourier Transform across a segment (window) of arbitrary size affects the accuracy with which one can localize TP boundaries. Here, we report a technique that provides higher-resolution identification of these boundaries, and use the technique to explore the biological correlates of TP regions in the genome of the model organism C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号