首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membrane intrinsic proteins (PIPs) are known to be major facilitators of the movement of a number of substrates across cell membranes. From a drought‐resistant cultivar of Oryza sativa (rice), we isolated an OsPIP1;3 gene single‐nucleotide polymorphism (SNP) that is mostly expressed in rice roots and is strongly responsive to drought stress. Immunocytochemistry showed that OsPIP1;3 majorly accumulated on the proximal end of the endodermis and the cell surface around the xylem. Expression of GFP‐OsPIP1;3 alone in Xenopus oocytes or rice protoplasts showed OsPIP1;3 mislocalization in the endoplasmic reticulum (ER)‐like neighborhood, whereas co‐expression of OsPIP2;2 recruited OsPIP1;3 to the plasma membrane and led to a significant enhancement of water permeability in oocytes. Moreover, reconstitution of 10×His‐OsPIP1;3 in liposomes demonstrated water channel activity, as revealed by stopped‐flow light scattering. Intriguingly, by patch‐clamp technique, we detected significant NO3? conductance of OsPIP1;3 in mammalian cells. To investigate the physiological functions of OsPIP1;3, we ectopically expressed the OsPIP1;3 gene in Nicotiana benthamiana (tobacco). The transgenic tobacco plants exhibited higher photosynthesis rates, root hydraulic conductivity (Lpr) and water‐use efficiency, resulting in a greater biomass and a higher resistance to water deficit than the wild‐type did. Further experiments suggested that heterologous expression of OsPIP1;3 in cyanobacterium altered bacterial growth under different conditions of CO2 gas supply. Overall, besides shedding light on the multiple functions played by OsPIP1;3, this work provides insights into the translational value of plant AQPs.  相似文献   

2.
During rice grain filling, grain moisture content and weight show dynamic changes. We focused on the expression of all 33 rice aquaporins in developing grains. Only two aquaporin genes, OsPIP2;1 and OsTIP3;1, were highly expressed in the period 10–25 days after heading (DAH). High-temperature treatment from 7 to 21 DAH abolished the dynamic up-regulation of OsPIP2;1 in the period 15–20 DAH, whereas OsTIP3;1 expression was not affected. Immunohistochemical analysis revealed that OsPIP2;1 was present in the starchy endosperm, nucellar projection, nucellar epidermis, and dorsal vascular bundles, but not in the aleurone layer. OsTIP3;1 was present in the aleurone layer and starchy endosperm. Water transport activity of recombinant OsTIP3;1 was low, in contrast to the high activity of recombinant OsPIP2;1 we reported previously. Our data suggest that OsPIP2;1 and OsTIP3;1 have distinct roles in developing grains.  相似文献   

3.
Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1ΔNT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1ΔNT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1ΔNT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.  相似文献   

4.
Water transport in plants is greatly dependent on the expression and activity of water transport channels, called aquaporins. Here, we have clarified the tissue- and cell-specific localization of aquaporins in rice plants by immunoblotting and immunocytochemistry using seven isoform-specific aquaporin antibodies. We also examined water transport activities of typical aquaporin family members using a yeast expression system in combination with a stopped-flow spectrophotometry assay. OsPIP1 members, OsPIP2;1, OsTIP1;1 and OsTIP2;2 were expressed in both leaf blades and roots, while OsPIP2;3, OsPIP2;5 and OsTIP2;1 were expressed only in roots. In roots, large amounts of aquaporins accumulated in the region adjacent to the root tip (around 1.5-4 mm from the root tip). In this region, cell-specific localization of the various aquaporin members was observed. OsPIP1 members and OsTIP2;2 accumulated predominantly in the endodermis and the central cylinder, respectively. OsTIP1;1 showed specific localization in the rhizodermis and exodermis. OsPIP2;1, OsPIP2;3 and OsPIP2;5 accumulated in all root cells, but they showed higher levels of accumulation in endodermis than other cells. In the region at 35 mm from the root tip, where aerenchyma develops, aquaporins accumulated at low levels. In leaf blades, OsPIP1 members and OsPIP2;1 were localized mainly in mesophyll cells. OsPIP2;1, OsPIP2;3, OsPIP2;5 and OsTIP2;2 expressed in yeast showed high water transport activities. These results suggest that rice aquaporins with various water transport activities may play distinct roles in facilitating water flux and maintaining the water potential in different tissues and cells.  相似文献   

5.
The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.  相似文献   

6.
7.
Lian HL  Yu X  Lane D  Sun WN  Tang ZC  Su WA 《Cell research》2006,16(7):651-660
Aquaporins play a significant role in plant water relations. To further understand the aquaporin function in plants under water stress, the expression of a subgroup of aquaporins, plasma membrane intrinsic proteins (PIPs), was studied at both the protein and mRNA level in upland rice (Oryza sativa L. cv. Zhonghan 3) and lowland rice (Oryza sativa L. cv. Xiushui 63) when they were water stressed by treatment with 20% polyethylene glycol (PEG). Plants responded differently to 20% PEG treatment. Leaf water content of upland rice leaves was reduced rapidly. PIP protein level increased markedly in roots of both types, but only in leaves of upland rice after 10 h of PEG treatment. At the mRNA level, OsPIP1,2, OsPIP1,3, OsPIP2;1 and OsPIP2;5 in roots as well as OsPIP1,2 and OsPIP1;3 in leaves were significantly up-regulated in upland rice, whereas the corresponding genes remained unchanged or down-regulated in lowland rice. Meanwhile, we observed a significant increase in the endogenous abscisic acid (ABA) level in upland rice but not in lowland rice under water deficit. Treatment with 60 μM ABA enhanced the expression of OsPIP1;2, OsPIP2;5 and OsPIP2;6 in roots and OsPIP1;2, OsPIP2;4 and OsPIP2;6 in leaves of upland rice. The responsiveness of PIP genes to water stress and ABA were different, implying that the regulation of PIP genes involves both ABA-dependent and ABA-independent signaling oathways during water deficit.  相似文献   

8.
9.
A series of 2,5-substituted-1,3,4-oxadiazole/thiadiazole sulfone derivatives were synthesized and evaluated for their antibacterial activities against rice bacterial leaf blight and leaf streak caused by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicolaby via the turbidimeter test in vitro. Antibacterial bioassay results indicated that most compounds demonstrated good inhibitory effect antibacterial bioactivities against rice bacterial leaf blight and leaf streak. Among the title compounds, compound 6c demonstrated the best inhibitory effect against rice bacterial leaf blight and leaf streak with half-maximal effective concentration (EC50) values of 1.07 and 7.14 μg/mL, respectively, which were even better than those of commercial agents such as Bismerthiazol and Thiediazole Copper. In vivo antibacterial activities tests at greenhouse conditions demonstrated that the controlling effect of compounds 6c (43.5%) and 6g (42.4%) against rice bacterial leaf blight were better than those of Bismerthiazol (25.5%) and Thiediazole Copper (37.5%).  相似文献   

10.
Xanthomonas oryzae pv. oryzae and the closely related X. oryzae pv. oryzicola cause bacterial blight and bacterial leaf streak of rice, respectively. Although many rice resistance (R) genes and some corresponding avirulence (avr) genes have been characterized for bacterial blight, no endogenous avr/R gene interactions have been identified for leaf streak. Genes avrXa7 and avrXa10 from X. oryzae pv. oryzae failed to elicit the plant defense-associated hypersensitive reaction (HR) and failed to prevent development of leaf streak in rice cultivars with the corresponding R genes after introduction into X. oryzae pv. oryzicola despite the ability of this pathovar to deliver an AvrXa10:Cya fusion protein into rice cells. Furthermore, coinoculation of X. oryzae pv. oryzicola inhibited the HR of rice cultivar IRBB10 to X. oryzae pv. oryzae carrying avrXa10. Inhibition was quantitative and dependent on the type III secretion system of X. oryzae pv. oryzicola. The results suggest that one or more X. oryzae pv. oryzicola type III effectors interfere with avr/R gene-mediated recognition or signaling and subsequent defense response in the host. Inhibition of R gene-mediated defense by X. oryzae pv. oryzicola may explain, in part, the apparent lack of major gene resistance to leaf streak.  相似文献   

11.
12.
13.
Rapid growth of the submerged shoots of deepwater rice is essential for survival during the rainy season. We investigated changes in the expression of vacuolar H(+)-ATPase (V-ATPase), H(+)-pyrophosphatase (V-PPase), and aquaporins under submerged conditions. The amounts of vacuolar proton pumps, which support the active transport of ions into the vacuoles, were maintained on a membrane protein basis in the developing vacuoles. Among the six isogenes of V-PPase, OsVHP1;3 was markedly enhanced by submersion. The gene expression of efficient water channels, OsTIP1;1, OsTIP2;2, OsPIP1;1, OsPIP2;1, and OsPIP2;2, was markedly enhanced by submersion. The increase in aquaporin expression might support quick elongation of internodes. The mRNA levels of OsNIP2;2 and OsNIP3;1, which transport silicic and boric acids respectively, clearly decreased. The present study indicates that internodes of deepwater rice upregulate vacuolar proton pumps and water channel aquaporins and downregulate aquaporins that allow permeation of the substrates that suppress internode growth.  相似文献   

14.
15.
Root hydraulic conductivity (Lp(r)) and aquaporin amounts change diurnally. Previously, these changes were considered to be spontaneously driven by a circadian rhythm. Here, we evaluated the new hypothesis that diurnal changes could be triggered and enhanced by transpirational demand from shoots. When rice plants were grown under a 12h light/12h dark regime, Lp(r) was low in the dark and high in the light period. Root aquaporin mRNA levels also changed diurnally, but the amplitudes differed among aquaporin isoforms. Aquaporins, such as OsPIP2;1, showed moderate changes, whereas root-specific aquaporins, such as OsPIP2;5, showed temporal and dramatic induction around 2h after light initiation. When darkness was extended for 12h after the usual dark period, no such induction was observed. Furthermore, plants under 100% relative humidity (RH) showed no induction even in the presence of light. These results suggest that transpirational demand triggers a dramatic increase in gene expressions such as OsPIP2;5. Immunocytochemistry showed that OsPIP2;5 accumulated on the proximal end of the endodermis and of the cell surface around xylem. The strong induction by transpirational demand and the polar localization suggest that OsPIP2;5 contributes to fine adjustment of radial water transport in roots to sustain high Lp(r) during the day.  相似文献   

16.
The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.  相似文献   

17.
18.
The type II (T2S) and type III (T3S) secretion systems are important for virulence of Xanthomonas oryzae pv. oryzae, causal agent of bacterial leaf blight of rice. The T3S of gram-negative bacterial plant pathogens has been shown to suppress host defense responses, including programmed cell death reactions, whereas the T2S is involved in secreting cell-wall-degrading enzymes. Here, we show that a T3S-deficient (T3S-) mutant of X. oryzae pv. oryzae can induce a basal plant defense response seen as callose deposition, immunize rice against subsequent X. oryzae pv. oryzae infection, and cause cell-death-associated nuclear fragmentation. A T2S- T3S- double mutant exhibited a substantial reduction in the ability to evoke these responses. We purified two major effectors of the X. oryzae pv. oryzae T2S and characterized them to be a cellulase (ClsA) and a putative cellobiosidase (CbsA). The purified ClsA, CbsA, and lipase/esterase (LipA; a previously identified T2S effector) proteins induced rice defense responses that were suppressible by X. oryzae pv. oryzae in a T3S-dependent manner. These defense responses also were inducible by the products of the action of these purified proteins on rice cell walls. We further show that a CbsA- mutant or a ClsA- LipA- double mutant are severely virulence deficient. These results indicate that the X. oryzae pv. oryzae T2S secretes important virulence factors, which induce innate rice defense responses that are suppressed by T3S effectors to enable successful infection.  相似文献   

19.
20.
Rapid growth of the submerged shoots of deepwater rice is essential for survival during the rainy season. We investigated changes in the expression of vacuolar H+-ATPase (V-ATPase), H+-pyrophosphatase (V-PPase), and aquaporins under submerged conditions. The amounts of vacuolar proton pumps, which support the active transport of ions into the vacuoles, were maintained on a membrane protein basis in the developing vacuoles. Among the six isogenes of V-PPase, OsVHP1;3 was markedly enhanced by submersion. The gene expression of efficient water channels, OsTIP1;1, OsTIP2;2, OsPIP1;1, OsPIP2;1, and OsPIP2;2, was markedly enhanced by submersion. The increase in aquaporin expression might support quick elongation of internodes. The mRNA levels of OsNIP2;2 and OsNIP3;1, which transport silicic and boric acids respectively, clearly decreased. The present study indicates that internodes of deepwater rice upregulate vacuolar proton pumps and water channel aquaporins and downregulate aquaporins that allow permeation of the substrates that suppress internode growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号