首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

2.
3.
4.
The post-translational modification of proteins enables cells to respond promptly to dynamic stimuli by controlling protein functions. In higher plants, SPINDLY (SPY) and SECRET AGENT (SEC) are two prominent O-glycosylation enzymes that have both unique and overlapping roles; however, the effects of their O-glycosylation on fruit ripening and the underlying mechanisms remain largely unknown. Here we report that SlSPY affects tomato fruit ripening. Using slspy mutants and two SlSPY-OE lines, we provide biological evidence for the positive role of SlSPY in fruit ripening. We demonstrate that SlSPY regulates fruit ripening by changing the ethylene response in tomato. To further investigate the underlying mechanism, we identify a central regulator of ethylene signalling ETHYLENE INSENSITIVE 2 (EIN2) as a SlSPY interacting protein. SlSPY promotes the stability and nuclear accumulation of SlEIN2. Mass spectrometry analysis further identified that SlEIN2 has two potential sites Ser771 and Thr821 of O-glycans modifications. Further study shows that SlEIN2 is essential for SlSPY in regulating fruit ripening in tomatoes. Collectively, our findings reveal a novel regulatory function of SlSPY in fruit and provide novel insights into the role of the SlSPY-SlEIN2 module in tomato fruit ripening.  相似文献   

5.
6.
7.
8.
9.
The entire senescence period, including ripening, is characterized in cherry tomato ( Lycopersicon esculentum Mill. var. cerasiforme Alef.) by two successive changes in overall polar lipid content. The rise in respiration of the fruit in the climacteric phase is accompanied by a large increase in lipids, notably phospholipids, such as phosphatidylcholine and phosphatidic acid. This suggests the coexistence of anabolic and catabolic processes in this first period. At the degreening stage of the fruit, decreased levels of monogalactosyldiacylglycerol and the disappearance of trigalactosyldiacylglycerol may indicate some degradation of the chloroplast compartment. Following a respiratory upsurge, a sudden breakdown of total lipids occurs concomitantly with maximal ethylene production. This breakdown is essentially caused by a parallel decrease in the amounts of phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid and also phosphatidylglycerol. However, in the cherry tomato, lipid peroxidation, evaluated by alteration of fatty acid distribution, seems insufficient to account for the ethylene peak.  相似文献   

10.
11.
Sucrose transporters of higher plants belong to a large gene family. At least four different sucrose transporters are known in Solanaceous plants, although their function remains to be elucidated in detail. The isolation of LeSUT1 and LeSUT2 from Lycopersicon esculentum has been described earlier. Whereas SUT1 is supposed to be the main phloem loader of sucrose in Solanaceae , the role of SUT2 remains a matter of debate. A transgenic approach was taken to evaluate the potential functions of SUT2/SUC3 proteins in sucrose transport or sensing. Expression of LeSUT1 and LeSUT2 was inhibited independently in transgenic tomato plants, using the antisense technique, in order to analyse their specific functions. Although the phloem-specific inhibition of LeSUT1 antisense plants showed a phenotype consistent with an essential role in phloem loading, constitutive LeSUT2 antisense inhibition exclusively affected tomato fruit and seed development. Neither LeSUT1 , nor the LeSUT2 antisense plants were able to produce normal tomato fruits; however, it is likely that independent mechanisms underlie these phenomena. While phloem loading was blocked in LeSUT1 antisense plants, the fertility of fruits was reduced in LeSUT2 antisense plants. A detailed physiological analysis of these plants established a role for SUT2 in pollen tube growth and thus assigned a physiological role for SUT2.  相似文献   

12.
13.
14.

Background

Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague,although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination.

Scope

Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described.

Conclusions

The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits.  相似文献   

15.
16.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

17.
The role of endogenous gibberellin (GA) in seed and fruit development was studied with the use of the GA-deficient ga-1 mutant of tomato ( Lycopersicon esculentum Mill. cv. Moneymaker). Flowers of the ga-1 mutant were abnormal and sterile, but parthenocarpic fruit development was observed occasionally on the dwarf plants. A single application of GA4+7 restored the fertility of the mutant flowers and resulted in seed set. Development of GA-producing and GA-deficient seeds in GA-deficient fruits was compared by pollination of ga-1/ga-1 flowers with wild-type or ga-1 pollen, respectively. In ga-1/ga-1 seed dehydration started about 1 week earlier than in Ga-1/ga-1 seeds. Ultimate fresh and dry weights of mature Ga-1/ga-1 seeds were higher than those of ga-1/ga-1 seeds and showed negative correlations with the total number of seeds per fruit. Total content and composition of seed proteins were not influenced by the GA-deficiency. Germination of the mature seeds depended on embryonal GA synthesis and was not influenced by maternal GA production. Final fresh weight of the ga-1/ga-1 fruits was positively correlated with the number of seeds per fruit. In these fruits, the minimum number of seeds for growth above the parthenocarpic level was about 10 or 35 in the presence of Ga-1/ga-1 or ga-1/ga-1 seeds, respectively. Fruits containing GA-producing seeds reached a higher fresh weight than those containing GA-deficient seeds, and their ripening was delayed by one week. It is concluded that gibberellin is indispensable for the development of fertile flowers and for seed germination, but only promoting in later stages of fruit and seed development.  相似文献   

18.
19.
20.
Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号