首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two indole alkaloids which induce the Epstein-Barr virus early antigen of Raji cells (B lymphocyte) were found in the cultured broth of Actinomycetes NA34-17, from which teleocidin B was also obtained. The active compounds isolated were identified from their spectral data and chemical evidence as (—)-indolactam V and (—)-14-O-acetyl indolactam V.  相似文献   

2.
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo.  相似文献   

3.
    
Root hairs (RHs) are tubular extensions of root epidermal cells that favour nutrient uptake and microbe interactions. RHs show a fast apical growth, constituting a unique single cell model system for analysing cellular morphodynamics. In this context, live cell imaging using microfluidics recently developed to analyze root development is appealing, although high-resolution imaging is still lacking to enable an investigation of the accurate spatiotemporal morphodynamics of organelles. Here, we provide a powerful coverslip based microfluidic device (CMD) that enables us to capture high resolution confocal imaging of Arabidopsis RH development with real-time monitoring of nuclear movement and shape changes. To validate the setup, we confirmed the typical RH growth rates and the mean nuclear positioning previously reported with classical methods. Moreover, to illustrate the possibilities offered by the CMD, we have compared the real-time variations in the circularity, area and aspect ratio of nuclei moving in growing and mature RHs. Interestingly, we observed higher aspect ratios in the nuclei of mature RHs, correlating with higher speeds of nuclear migration. This observation opens the way for further investigations of the effect of mechanical constraints on nuclear shape changes during RH growth and nuclear migration and its role in RH and plant development.  相似文献   

4.
Using a novel setup, we assessed how fast growth of Nicotiana tabacum seedlings responds to alterations in the light regime and investigated whether starch-free mutants of Arabidopsis thaliana show decreased growth potential at an early developmental stage. Leaf area and relative growth rate were measured based on pictures from a camera automatically placed above an array of 120 seedlings. Detection of total seedling leaf area was performed via global segmentation of colour images for preset thresholds of the parameters hue, saturation and value. Dynamic acclimation of relative growth rate towards altered light conditions occurred within 1 d in N. tabacum exposed to high nutrient availability, but not in plants exposed to low nutrient availability. Increased leaf area was correlated with an increase in shoot fresh and dry weight as well as root growth in N. tabacum. Relative growth rate was shown to be a more appropriate parameter than leaf area for detection of dynamic growth acclimation. Clear differences in leaf growth activity were also observed for A. thaliana. As growth responses are generally most flexible in early developmental stages, the procedure described here is an important step towards standardized protocols for rapid detection of the effects of changes in internal (genetic) and external (environmental) parameters regulating plant growth.  相似文献   

5.
* The blue light photoreceptor phototropin-1 has been shown to enhance fitness in Arabidosis thaliana under field conditions. Here, we ask whether performance consequences of phototropin-1 reflect its impact on root growth and drought tolerance. * We used a PHOT1-GFP gene construct to test whether phototropin-1 abundance in roots is highest at shallow soil depths where light penetration is greatest. We then compared root growth efficiency and size at maturity between individuals with and without functional phototropin-1. Comparisons were made under wet and dry conditions to assess the impact of phototropin-1 on drought tolerance. * Phototropin-1 was most abundant in upper root regions and its impact on root growth efficiency decreased with soil depth. Roots of plants with functional phototropin-1 made fewer random turns and traveled further for a given length (higher efficiency) than roots of phot1 mutants. In dry (but not wet) soil, enhancement of root growth efficiency by phototropin-1 increased plant size at maturity. * Results indicate that phototropin-1 enhances performance under drought by mediating plastic increases in root growth efficiency near the soil surface.  相似文献   

6.
    
Integrative studies of plant growth require spatially and temporally resolved information from high‐throughput imaging systems. However, analysis and interpretation of conventional two‐dimensional images is complicated by the three‐dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping4D uses a light‐field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three‐dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping4D was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping4D, we compare diurnal changes in Arabidopsis thaliana wild‐type Col‐0 and the starchless pgm mutant. Compared to Col‐0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light‐field camera systems as a tool to accurately measure morphological and growth‐related features in plants.  相似文献   

7.
    
Although quantitative characterization of growth phenotypes is of key importance for the understanding of essential networks driving plant growth, the majority of growth‐related genes are still being identified based on qualitative visual observations and/or single‐endpoint quantitative measurements. We developed an in vitro growth imaging system (IGIS) to perform time‐resolved analysis of rosette growth. In this system, Arabidopsis plants are grown in Petri dishes mounted on a rotating disk, and images of each plate are taken on an hourly basis. Automated image analysis was developed in order to obtain several growth‐related parameters, such as projected rosette area, rosette relative growth rate, compactness and stockiness, over time. To illustrate the use of the platform and the resulting data, we present the results for the growth response of Col–0 plants subjected to three mild stress conditions. Although the reduction in rosette area was relatively similar at 19 days after stratification, the time‐lapse analysis demonstrated that plants react differently to salt, osmotic and oxidative stress. The rosette area was altered at various time points during development, and leaf movement and shape parameters were also affected differently. We also used the IGIS to analyze in detail the growth behavior of mutants with enhanced leaf size. Analysis of several growth‐related parameters over time in these mutants revealed several specificities in growth behavior, underlining the high complexity of leaf growth coordination. These results demonstrate that time‐resolved imaging of in vitro rosette growth generates a better understanding of growth phenotypes than endpoint measurements.  相似文献   

8.
9.
The high-throughput phenotypic analysis of Arabidopsis thaliana collections requires methodological progress and automation. Methods to impose stable and reproducible soil water deficits are presented and were used to analyse plant responses to water stress. Several potential complications and methodological difficulties were identified, including the spatial and temporal variability of micrometeorological conditions within a growth chamber, the difference in soil water depletion rates between accessions and the differences in developmental stage of accessions the same time after sowing. Solutions were found. Nine accessions were grown in four experiments in a rigorously controlled growth-chamber equipped with an automated system to control soil water content and take pictures of individual plants. One accession, An1, was unaffected by water deficit in terms of leaf number, leaf area, root growth and transpiration rate per unit leaf area. Methods developed here will help identify quantitative trait loci and genes involved in plant tolerance to water deficit.  相似文献   

10.
Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over‐expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild‐type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light–dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture.  相似文献   

11.
为探究干旱胁迫对栀子Gardenia jasminoides植株生长、花叶性状及抗氧化酶活性的影响,采用‘灵地珍栀'扦插苗为试材,测定不同干旱胁迫程度下其株高增长量、地径增长量、相对叶绿素含量、花与叶性状的变化。结果表明,干旱胁迫显著降低栀子株高和地径增长量,降低花直径、新增叶数、叶长、叶宽等指标,且随着干旱程度的加深,抑制效果愈加明显,但SPAD总体呈上升趋势,且随着干旱胁迫时间延长,栀子SOD活性总体上升,POD、CAT活性总体下降。干旱胁迫缩短了栀子单叶的生长周期,加速叶片成熟,抑制新叶的形成和生殖生长,打破了栀子叶片原有抗氧化酶之间的协同作用,以此降低能量和水分消耗,导致抗氧化还原失衡,自由基积累,膜脂过氧化加剧,栀子花、叶片变小变少。  相似文献   

12.
    
A major challenge in the field of proteomics is obtaining high‐quality peptides for comprehensive proteome profiling by LC–MS. Here, evaluation and modification of a range of sample preparation methods using photosynthetically active Arabidopsis leaf tissue are done. It was found that inclusion of filter‐aided sample preparation (FASP) based on filter digestion improves all protein extraction methods tested. Ultimately, a detergent‐free urea‐FASP approach that enables deep and robust quantification of leaf and root proteomes is shown. For example, from 4‐day‐old leaf tissue, up to 11 690 proteins were profiled from a single sample replicate. This method should be broadly applicable to researchers working with difficult to process plant samples.  相似文献   

13.
    
Brassinosteroids (BRs) are plant hormones that are essential for a wide range of developmental processes in plants. Many of the genes responsible for the early reactions in the biosynthesis of BRs have recently been identified. However, several genes for enzymes that catalyze late steps in the biosynthesis pathways of BRs remain to be identified, and only a few genes responsible for the reactions that produce bioactive BRs have been identified. We found that the ROTUNDIFOLIA3 (ROT3) gene, encoding the enzyme CYP90C1, which was specifically involved in the regulation of leaf length in Arabidopsis thaliana, was required for the late steps in the BR biosynthesis pathway. ROT3 appears to be required for the conversion of typhasterol to castasterone, an activation step in the BR pathway. We also analyzed the gene most closely related to ROT3, CYP90D1, and found that double mutants for ROT3 and CYP90D1 had a severe dwarf phenotype, whereas cyp90d1 single knockout mutants did not. BR profiling in these mutants revealed that CYP90D1 was also involved in BR biosynthesis pathways. ROT3 and CYP90D1 were expressed differentially in leaves of A. thaliana, and the mutants for these two genes differed in their defects in elongation of hypocotyls under light conditions. The expression of CYP90D1 was strongly induced in leaf petioles in the dark. The results of the present study provide evidence that the two cytochrome P450s, CYP90C1 and CYP90D1, play distinct roles in organ-specific environmental regulation of the biosynthesis of BRs.  相似文献   

14.
通过PCR扩增从拟南芥cDNA文库中得到VSP2蛋白的编码序列,将其构建到原核表达载体pET-22b上,并在大肠杆菌BL21菌株中实现高效可溶表达。经过Ni-NTA亲和层析一步纯化,获得电泳纯的重组VSP2蛋白。以pNPP为底物检测,该蛋白具有酸性磷酸酶活性,反应的最适pH值4.5,最适温度为45oC,Km值为26.2mM。重组VSP2蛋白表达量高,纯化后均一性好,适于蛋白晶体生长。  相似文献   

15.
16.
  总被引:1,自引:0,他引:1  
  相似文献   

17.
    
An uncharacterized protein from Arabidopsis thaliana consisting of a single C2 domain (At3g17980) was cloned into the pETM11 vector and expressed in Escherichia coli, allowing purification to homogeneity in a single chromatographic step. Good‐quality diffracting crystals were obtained using vapour‐diffusion techniques. The crystals diffracted to 2.2 Å resolution and belonged to space group P212121, with unit‐cell parameters a = 35.3, b = 88.9, c = 110.6 Å. A promising molecular‐replacement solution has been found using the structure of the C2 domain of Munc13‐C2b (PDB entry 3kwt ) as the search model.  相似文献   

18.
Trees of Juglans regia L. shed leaves when subjected to drought. Before shedding (when leaves are yellow), the petioles have lost 87% of their maximum hydraulic conductivity, but stems have lost only 14% of their conductivity. This is caused by the higher vulnerability of petioles than stems to water-stress induced cavitation. These data are discussed in the context of the plant segmentation hypothesis.  相似文献   

19.
Background and Aims: Leaves expand during a given period of time until they reachtheir final size and form, which is called determinate growth.Duration of leaf expansion is stable when expressed in thermal-timeand in the absence of stress, and consequently it is often proposedthat it is controlled by a robust programme at the plant scale.The usual hypothesis is that growth cessation occurs when cellexpansion becomes limited by an irreversible tightening of cellwall, and that leaf size is fixed once cell expansion ceases.The objective of this paper was to test whether leaf expansioncould be restored by rewatering plants after a long soil water-deficitperiod. Methods: Four experiments were performed on two different species (Arabidopsisthaliana and Helianthus annuus) in which the area of leavesthat had apparently reached their final size was measured uponreversal of water stresses of different intensities and durations. Key Results: Re-growth of leaves that had apparently reached their finalsize occurred in both species, and its magnitude depended onlyon the time elapsed from growth cessation to rewatering. Leafarea increased up to 186% in A. thaliana and up to 88% in H.annuus after rewatering, with respect to the leaves of plantsthat remained under water deficit. Re-growth was accounted forby cell expansion. Increase in leaf area represented actualgrowth and not only a reversible change due to increased turgor. Conclusions: After the leaf has ceased to grow, leaf cells retain their abilityto expand for several days before leaf size becomes fixed. Aresponse window was identified in both species, during whichthe extent of leaf area recovery decreased with time after the‘initial’ leaf growth cessation. These results suggestthat re-growth after rewatering of leaves having apparentlyattained their final size could be a generalized phenomenon,at least in dicotyledonous plants.  相似文献   

20.
    
Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号