首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Community structures of aphids and their parasitoids were studied in fruit crop habitats of eastern Belgium in 2014 and 2015. Quantitative food webs of these insects were constructed separately for each year, and divided into subwebs on three host‐plant categories, fruit crop plants, non‐crop woody and shrub plants and non‐crop herbaceous plants. The webs were analyzed using the standard food web statistics designed for binary data. During the whole study period, 78 plant species were recorded as host plants of 71 aphid species, from which 48 parasitoid species emerged. The community structure, aphid / parasitoid species‐richness ratio and trophic link number varied between the two years, whereas the realized connectance between parasitoids and aphids was relatively constant. A new plant–aphid–parasitoid association for Europe was recorded. Dominant parasitoid species in the study sites were Ephedrus persicae, Binodoxys angelicae and Praon volucre: the first species was frequently observed on non‐crop trees and shrubs, but the other two on non‐crop herbaceous plants. The potential influence, through indirect interactions, of parasitoids on aphid communities was assessed with quantitative parasitoid‐overlap diagrams. Symmetrical links were uncommon, and abundant aphid species seemed to have large indirect effects on less abundant species. These results show that trophic indirect interactions through parasitoids may govern aphid populations in fruit crop habitats with various non‐crop plants, implying the importance for landscape management and biological control of aphid pests in fruit agroecosystems.  相似文献   

2.
3.
1. Ants have evolved mutualistic relationships with a diverse array of plant and animal species. Usually, the predatory/aggressive behaviour of ants near food sources can limit herbivore damage. 2. Galls of Disholcaspis edura on Quercus turbinella produce a secretion that is harvested by three species of ants (Formica neorufibarbis, Liometopium apiculatum, and Monomorium cyaneum) in the chaparral vegetation of Arizona, U.S.A. The study reported here provides evidence of a mutualistic relationship between these species of ants and the gall-forming wasp Disholcaspis edura. 3. An ant exclusion experiment showed that when ants tended galls, the rate of parasitism by Platygaster sp. on Disholcaspis edura was nearly halved in comparison to a treatment in which ants were excluded. 4. In the presence of ants, galls with the largest diameter suffered a lower mortality rate due to parasitoid attack than when ants were excluded. Thus, ant presence reduced the selective pressure imposed by Platygaster sp. on the galls with larger diameter.  相似文献   

4.
Predicting the ecological and evolutionary trajectories of populations in multispecies communities is one of the fundamental challenges in ecology. Many of these predictions are made by scaling patterns observed from pairwise interactions. Here, we show that the coupling of ecological and evolutionary outcomes is likely to be weaker in increasingly complex communities due to greater chance of life‐history trait correlations. Using model microbial communities comprising a focal bacterial species, Bacillus subtilis, a bacterial competitor, protist predator and phage parasite, we found that increasing the number of enemies in a community had an overall negative effect on B. subtilis population growth. However, only the competitor imposed direct selection for B. subtilis trait evolution in pairwise cultures and this effect was weakened in the presence of other antagonists that had a negative effect on the competitor. In contrast, adaptation to parasites was driven indirectly by correlated selection where competitors had a positive and predators a negative effect. For all measured traits, selection in pairwise communities was a poor predictor of B. subtilis evolution in more complex communities. Together, our results suggest that coupling of ecological and evolutionary outcomes is interaction‐specific and generally less evident in more complex communities where the increasing number of trait correlations could mask weak ecological signals.  相似文献   

5.
Cocoons of the specialist parasitoid Cotesia melitaearum , which attacks the Glanville fritillary butterfly in the Åland islands of SW Finland, are parasitized by the generalist hyperparasitoid Gelis agilis . We added experimentally to the system a second host species for G. agilis , C. glomerata , with which C. melitaearum does not compete for resources. After the one-time addition of the second parasitoid the natural populations of C. melitaearum declined in the treatment, as predicted by the apparent competition theory.  相似文献   

6.
Single species or groups of species can be subjected to differing levels of parasitism on different plants. Previous studies have reported that parasitism of larval macrolepidoptera in an assemblage on box elder (Acer negundo L.) was significantly greater than on black willow [Salix nigra (Marsh)]. In this study, quantitative food webs, parasitoid overlap diagrams and other food web attributes were used to identify and describe direct and indirect interactions, and to compare assemblages on each tree species. These comparisons helped identify possible mechanisms explaining the differential parasitism observed. Although links among numerically dominant species in each assemblage were not strong, links between numerically dominant and subdominant species were strong. That is, numerically dominant and subdominant species interacted via shared parasitoids. The degree of parasitoid sharing by numerically dominant and subdominant species differed in each tree. There was less sharing of parasitoids on black willow than on box elder. Further, on box elder, the majority of parasitoids affecting numerically subdominant species originated from numerically dominant species, unlike in willow. These results lead to a working hypothesis—the source/nursery hypothesis—that proposes that community-wide levels of parasitism are highest in circumstances in which numerically subdominant species share parasitoid species in common with numerically dominant species, and most parasitoids attacking subdominant species originate from numerically dominant species. Thus, differences in degree of sharing and the types of herbivores sharing parasitoids may explain differential parasitism. Further, the source/nursery hypothesis may explain why the vast majority of species in most assemblages are numerically subdominant. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host–species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta-analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non-parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host–species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically-transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non-parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience.  相似文献   

8.
方笛熙  万霞  毛婉琼  张锋 《生态学报》2023,43(17):7109-7117
病原体感染对种间竞争的影响可能是因为改变了宿主的资源利用过程,然而竞争模型(Lotka-Volterra)由于参数化竞争系数而忽略了资源的动态变化过程,因此基于此类模型的研究无法揭示病原体对宿主资源利用的影响。基于Tilman的资源竞争理论构建了病原体感染一个物种的资源竞争模型,通过分析宿主物种资源利用效率的变化探讨了病原体对种间竞争的影响。结果表明:(1)病原体降低了宿主对资源的消耗率(消费矢量变短),抬高了对资源的最低需求(零等倾线上移),这意味着宿主的竞争力减弱;(2)虽然感染影响了竞争物种的密度,但不会改变共存物种的共存状态;(3)病原体可以使宿主物种的竞争对手更容易入侵,形成共存局面,极大地扩大了竞争物种共存的参数范围,本质上促进了物种多样性维持;(4)病原体的传播率和毒性也复杂地影响了竞争物种共存,传播率越大越能促进物种共存,而中等强度毒性最能促进物种共存。研究结果明确了病原体对物种资源利用模式的潜在改变,强调了病原体在物种共存和生物多样性维持中的重要性。  相似文献   

9.
The quantitative structure of two host–parasitoid communities based on leaf-mining flies (Diptera, Agromyzidae) in Argentina is described. The two communities consisted of 29 and 27 hosts, 46 and 40 parasitoids, and 193 and 179 recorded host–parasitoid associations. Also, food webs were constructed for one community based solely on samples taken in the wet and dry seasons. Data were expressed as quantitative food webs, and the manner in which food web properties, such as connectance and compartmentalization, were influenced by sampling intensity was explored. The potential importance of indirect effects between hosts mediated by parasitoids (e.g. apparent competition) was assessed using quantitative parasitoid overlap diagrams. The studys results suggest that indirect effects are likely to be important in these highly connected communities. The limitations of the studys analysis, and how the conclusions can be tested experimentally, are discussed.  相似文献   

10.
Intra- and interspecific larval interactions that take place in a host body were investigated for two tachnid fliesEpicampocera succincta andCompsilura concinnata (Diptera: Tachinidae) parasitizingPieris butterfly larvae.E. succincta, a specialist onPieris butterflies, showed contest-type intraspecific competition, eliminating all the other conspecific larvae. On the other hand, an extreme generalist parasitoidC. concinnata exhibited scramble-type competition, sharing the host with other conspecifics and suffering reduced body size as a result. However, when these two species occurred together in a single host,C. concinnata had a much higher chance of survival. Moreover,C. concinnata could often survive in the presence of a parasitoid waspCotesia glomerata (Hymenoptera: Braconidae) whileE. succincta could not. The high tolerance ofC. concinnata could be attributable to its being an extreme generalist: To attack and survive on many different hosts, one has to be able to deal with various competitors. The competitive inferiority of the specialistE. succincta, on the other hand, may be a result of relatively recent encounter with, those competitors.  相似文献   

11.
With the increased use of biological control agents, artificial food webs are created in agricultural crops and the interactions between plants, herbivores and natural enemies change from simple tritrophic interactions to more complex food web interactions. Therefore, herbivore densities will not only be determined by direct predator–prey interactions and direct and indirect defence of plants against herbivores, but also by other direct and indirect interactions such as apparent competition, intraguild predation, resource competition, etc. Although these interactions have received considerable attention in theory and experiments, little is known about their impact on biological control. In this paper, we first present a review of indirect food web interactions in biological control systems. We propose to distinguish between numerical indirect interactions, which are interactions where one species affects densities of another species through an effect on the numbers of an intermediate species and functional indirect interactions, defined as changes in the way that two species interact through the presence of a third species. It is argued that functional indirect interactions are important in food webs and deserve more attention. Subsequently, we discuss experimental results on interactions in an artificial food web consisting of pests and natural enemies on greenhouse cucumber. The two pest species are the two-spotted spider mite Tetranychus urticae and the western flower thrips, Frankliniella occidentalis. Their natural enemies are the predatory mite Phytoseiulus persimilis, which is commonly used for spider mite control and the predatory mites Neoseiulus cucumeris and Iphiseius degenerans and the predatory bug Orius laevigatus, all natural enemies of thrips. First, we analyse the possible interactions between these seven species and we continue by discussing how functional indirect interactions, particularly the behaviour of arthropods, may change the significance and impact of direct interactions and numerical indirect interactions. It was found that a simple food web of only four species already gives rise to some quite complicated combinations of interactions. Spider mites and thrips interact indirectly through resource competition, but thrips larvae are intraguild predators of spider mites. Some of the natural enemies used for control of the two herbivore species are also intraguild predators. Moreover, spider mites produce a web that is subsequently used by thrips to hide from their predators. We discuss these and other results obtained so far and we conclude with a discussion of the potential impact of functional indirect and direct interactions on food webs and their significance for biological control.  相似文献   

12.
Suppression of a target prey by a predator can depend on its surrounding community, including the presence of nontarget, alternative prey. Basic theoretical models of two prey species that interact only via a shared predator predict that adding an alternative prey should increase predator numbers and ultimately lower target pest densities as compared to when the target pest is the only prey. While this is an alluring prediction, it does not explain the numerous responses empirically observed. To better understand and predict the indirect interactions produced by shared predation, we explore how additional prey species affect three broad ecological mechanisms, the predator's reproductive, movement, and functional responses. Specifically, we review current theoretical models of shared predation by focusing on these mechanisms, and make testable predictions about the effects of shared predation. We find that target predation is likely to be higher in the two prey system because of predator reproduction, especially when: predators are prey limited, alternative or total prey density is high, or alternative prey are available over time. Target predation may also be greater because of predator movement, but only under certain movement rules and spatial distributions. Predator foraging behavior is most likely to cause lower target predation in the two-prey system, when per capita predation is limited by something other than prey availability. It is clear from this review that no single theoretical generalization will accurately predict community-level effects for every system. However, we can provide testable hypotheses for future empirical and theoretical investigations of indirect interactions and help enhance their potential use in biological control.  相似文献   

13.
Abstract. 1. Many ant species abandon foraging and retreat underground when parasitoids in the dipteran family Phoridae are present. Although the influence of phorids on ant foraging is well documented, their influence on interspecific competition is less studied. This study examined whether phorids influenced the competitive ability of host ants in the genus Linepithema at two sites in Brazil.
2. The phorid Pseudacteon lontrae attacked Linepithema piliferum at one site, while the phorid Pseudacteon pusillus attacked an unknown Linepithema ( Linepithema sp.) at the other site. Phorid parasitoids of Linepithema were far more common than phorids of other ant species.
3. Despite a high abundance of phorids, it was difficult to conclude that they influenced competition. Captures in pitfall traps indicated that host Linepithema were most active during times of day when phorids were inactive.
4. Camponotus rufipes and Brachymyrmex sp., the most common competitors of Linepithema sp. (60% of all interactions), dominated Linepithema sp. during the day regardless of phorids. Remaining ant species could not be evaluated individually because they interacted with Linepithema sp. infrequently.
5. Ectatomma brunneum was the most common competitor of L. piliferum (58% of all interactions). The high abundance of phorids at this site made it impossible to evaluate interactions between E. brunneum and L. piliferum in the absence of phorids.
6. Phorids seldom influenced exploitative competition by causing host Linepithema to abandon the bait when no ant competitors were present.  相似文献   

14.
Assemblage structure and acquisition of high-value resources will usually be affected by changes in resource availability and differential competitive abilities of assemblage members. In fragmented habitats where carrying capacity limits are exceeded due to high population densities and biomass, interspecific interactions can be expected to occur at a high frequency, potentially turning into an important cost for coexistence. We studied assemblage- and guild-level patterns of interspecific interactions in two highly diverse isolated primate assemblages in southern Amazonia. Specifically, we assessed the effects of temporal variation in fruit availability on the rates of interspecific interactions between gray woolly monkeys (Lagothrix lagotricha cana), one of the largest tree-dwelling mammals of the Amazon forests, and nine syntopic primate species. We found that fruit availability positively predicted rate of intraguild interactions in contrast to overall assemblage interaction rate. We did not find statistical evidence for the effect of fruit availability on the assemblage rates of type-dependent (i.e., agonistic or non-agonistic) and context-dependent (i.e., feeding or non-feeding) interactions. However, there was a clear trend toward increased feeding-related and agonistic-related interactions as fruit availability increased, with agonistic interactions mostly occurring at guild-level. These results provide support for a significant role of fruit availability in structuring spatial–temporal intraguild interactions at our study sites. Costly interspecific interactions and spatial habitat overlap can be expected to occur at a high frequency in highly diverse assemblages living in human-modified landscapes, which in turn, can have potentially negative impacts to the species involved.  相似文献   

15.
Abstract.  1. The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), is an invasive species of south-eastern U.S.A. Since its introduction from South America approximately 70 years ago, this pest has devastated natural biodiversity.
2. Due to such ecological costs, Pseudacteon phorid fly parasitoids (Diptera: Phoridae) from South America are being introduced into the U.S.A. as a potential biological control agent. Here, the indirect effects of these specialised parasitoids on an interspecific native ant competitor, Forelius mccooki (Hymenoptera: Formicidae), are evaluated.
3. Over the course of a 50-day laboratory experiment, the results show that the native ant improved aspects of exploitative, but not interference, competition when S. invicta -attacking flies were present compared with when they were absent.
4.  Forelius mccooki colonies from the phorid treatment had approximately twice as many foragers at food baits relative to controls; however, there was no significant difference in interference aspects of competition or native ant colony growth between the two treatments.
5. These results suggest that the S. invicta -specialised parasitoids help shift the competitive balance more in favour of F. mccooki than if these flies were not present; however, this competitive advantage does not translate into increased colony growth after 50 days. These laboratory findings are interpreted with regard to the more complex interactions in the field.  相似文献   

16.
1. Solenopsis (Hymenoptera: Formicidae) fire ants are host to Pseudacteon (Diptera: Phoridae) parasitoids. The activity of S. geminata (F.) hosts and relative abundance of Pseudacteon phorids, along with five environmental variables, were measured at weekly intervals over an 8‐month period at two sites. 2. Pseudacteon relative abundances often varied greatly from week to week, and were only weakly positively correlated with S. geminata activity. 3. A quadratic function of soil temperature was the single best predictor of ant activity at both sites, explaining 32 and 73% of the variation in ant activity. A linear function of soil moisture was the single best predictor of phorid relative abundance at one site (r2 = 0.23) whereas no measured variables were significant predictors of phorid relative abundance at the other site. 4. Interspecific interactions at 600 baits were monitored at a third site to document dominance hierarchies and determine whether the presence of Pseudacteon phorids mediated interspecific interactions in their host, S. geminata. 5. Solenopsis geminata was near the top of dominance hierarchies, which did not diverge greatly from a linear pattern. Three species (S. geminata, S. invicta Buren, and Crematogaster laeviuscula Mayr) won the majority of their interspecific interactions and appear to be co‐dominants at this microhabitat‐rich site. 6. Overall, the presence of phorids had no significant effect on the outcome of interspecific contests involving S. geminata and all other ant species grouped together. Phorids may have contributed to some of the S. geminata losses against other co‐dominant species.  相似文献   

17.
Species assemblages and their interactions vary through space, generating diversity patterns at different spatial scales. Here, we study the local‐scale spatial variation of a cavity‐nesting bee and wasp community (hosts), their nest associates (parasitoids), and the resulting antagonistic network over a continuous and homogeneous habitat. To obtain bee/wasp nests, we placed trap‐nests at 25 sites over a 32 km2 area. We obtained 1,541 nests (4,954 cells) belonging to 40 host species and containing 27 parasitoid species. The most abundant host species tended to have higher parasitism rate. Community composition dissimilarity was relatively high for both hosts and parasitoids, and the main component of this variability was species turnover, with a very minor contribution of ordered species loss (nestedness). That is, local species richness tended to be similar across the study area and community composition tended to differ between sites. Interestingly, the spatial matching between host and parasitoid composition was low. Host β‐diversity was weakly (positively) but significantly related to geographic distance. On the other hand, parasitoid and host‐parasitoid interaction β‐diversities were not significantly related to geographic distance. Interaction β‐diversity was even higher than host and parasitoid β‐diversity, and mostly due to species turnover. Interaction rewiring between plots and between local webs and the regional metaweb was very low. In sum, species composition was rather idiosyncratic to each site causing a relevant mismatch between hosts and parasitoid composition. However, pairs of host and parasitoid species tended to interact similarly wherever they co‐occurred. Our results additionally show that interaction β‐diversity is better explained by parasitoid than by host β‐diversity. We discuss the importance of identifying the sources of variation to understand the drivers of the observed heterogeneity.  相似文献   

18.
Parasitoids play an important role in ecosystem functioning through their influence on herbivorous insect populations. Theoretical and experimental evidence suggest that increased species richness can enhance and stabilize ecosystem function. It is important to understand how richness‐driven functional relationships change across environmental gradients. We investigated how temperature affected the relationship between parasitoid richness and parasitism rate in a guild of gall‐parasitoids along an elevational gradient. We collected galls at 15 sites along five elevational gradients (between 762 m and 1145 m asl) on six occasions over a year. A total of 1902 insects, including 1593 parasitoids, were reared from 12 402 galls. Parasitism rate increased significantly with temperature on all sampling occasions, except December and February. We found a significant, positive richness–parasitism relationship. This relationship, however, was weaker at higher elevations which may be linked to decreased functional efficiency of parasitoids at lower temperatures. Temporal variability in parasitism rate and parasitoid richness were significantly related, regardless of temperature. A stable functional guild of this kind may provide a more reliable ecosystem service under environmental changes.  相似文献   

19.
20.
《Current biology : CB》2023,33(2):381-388.e4
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号