首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The thylakoid membrane of photoautotrophic organisms contains the main components of the photosynthetic electron transport chain. Detailed proteome maps of the thylakoid protein complexes of two marine diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, were created by means of two-dimensional blue native (BN)/SDS-PAGE coupled with mass spectrometry analysis. One novel diatom-specific photosystem I (PS I)-associated protein was identified. A second plastid-targeted protein with possible PS I interaction was discovered to be restricted to the centric diatom species T. pseudonana. PGR5/PGRL homologues were found to be the only protein components of PS I-mediated cyclic electron transport common to both species. For the first time, evidence for a possible PS I localization of LI818-like light harvesting proteins (Lhcx) is presented. This study also advances the current knowledge on the light harvesting antenna composition and Lhcx expression in T. pseudonana on the protein level and presents details on the molecular distribution of Lhcx in diatoms. Above mentioned proteins and several others with unknown function provide a broad basis for further mutagenesis analysis, aiming toward further understanding of the composition and function of the photosynthetic apparatus of diatoms. The proteomics approach of this study further served as a tool to confirm and improve genome-derived protein models.  相似文献   

3.
Phototrophic epilithic biofilms harbour a distinct assemblage of heterotrophic bacteria, cyanobacteria and photoautotrophic algae. Secretion of extracellular polymeric substances (EPS) by these organisms and the physicochemical properties of the EPS are important factors for the development of the biofilms. We have isolated representative diatom and bacteria strains from epilithic biofilms of Lake Constance. By pairwise co-cultivating these strains we found that diatom growth and EPS secretion by diatoms may depend on the presence of individual bacteria. Similar results were obtained after addition of spent bacterial medium to diatom cultures, suggesting that soluble substances from bacteria have an impact on diatom physiology. While searching for putative bacterial signal substances, we found that concentrations of various dissolved free amino acids (DFAA) within the diatom cultures changed drastically during co-cultivation with bacteria. Further, the secretion of extracellular carbohydrates and proteins can be influenced by bacteria or their extracellular substances. We have performed mass spectrometric peptide mapping to identify proteins which are secreted when co-cultivating the diatom Phaeodactylum tricornutum Bohlin and Escherichia coli. The identified proteins are possibly involved in signalling, extracellular carbohydrate modification and uptake, protein and amino acid modification, and cell/cell aggregation of diatom and bacteria strains. Our data indicate that diatom-bacteria biofilms might be regulated by a complex network of chemical factors involving EPS, amino acid monomers and other substances. Thus interactions with bacteria can be considered as one of the main factors driving biofilm formation by benthic diatoms.  相似文献   

4.
The fluorescence yield of isolated fucoxanthin chlorophyll proteins, serving as light harvesting proteins in diatoms, was compared to the amount of diatoxanthin bound. Diatoxanthin was earlier shown to be involved in the xanthophyll cycle in diatoms as a functional analogue of zeaxanthin in higher plants. By growing cells under different light conditions, the amount of diatoxanthin in both the trimeric FCPa as well as the oligomeric FCPb of the diatom Cyclotella meneghiniana was increased. In the trimeric FCPa, the fluorescence yield decreased with increasing diatoxanthin content, whereas in the oligomeric FCPb fluorescence was generally lower, albeit constant. No pH dependence of fluorescence yield could be demonstrated except for artificially aggregated FCPa. Thus, diatoxanthin is able to quench fluorescence in FCPa, but the yield is also influenced by pH when the protein becomes aggregated.  相似文献   

5.
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.  相似文献   

6.
Cd has pleiotropic effects on plant physiology and in particular on photosynthesis. It has not been established yet if Cd alters the functioning of the xanthophyll cycle. To answer this question, an exponentially growing culture of the marine diatom Phaeodactylum tricornutum was incubated with Cd (20 mg/l) for 24 h and irradiated with a light activating the xanthophyll cycle, which in diatoms, consists of the reversible deepoxidation of diadinoxanthin to diatoxanthin. The measurements show that the deepoxidation step is not influenced by Cd. In contrast, the Cd concentration used sharply inhibits the epoxidation of diatoxanthin to diadinoxanthin.  相似文献   

7.
Plastids of diatoms and related algae evolved by secondary endocytobiosis, the uptake of a eukaryotic alga into a eukaryotic host cell and its subsequent reduction into an organelle. As a result diatom plastids are surrounded by four membranes. Protein targeting of nucleus encoded plastid proteins across these membranes depends on N-terminal bipartite presequences consisting of a signal and a transit peptide-like domain. Diatoms and cryptophytes share a conserved amino acid motif of unknown function at the cleavage site of the signal peptides (ASAFAP), which is particularly important for successful plastid targeting. Screening genomic databases we found that in rare cases the very conserved phenylalanine within the motif may be replaced by tryptophan, tyrosine or leucine. To test such unusual presequences for functionality and to better understand the role of the motif and putative receptor proteins involved in targeting, we constructed presequence:GFP fusion proteins with or without modifications of the “ASAFAP”-motif and expressed them in the diatom Phaeodactylum tricornutum. In this comprehensive mutational analysis we found that only the aromatic amino acids phenylalanine, tryptophan, tyrosine and the bulky amino acid leucine at the +1 position of the predicted signal peptidase cleavage site allow plastid import, as expected from the sequence comparison of native plastid targeting presequences of P. tricornutum and the cryptophyte Guillardia theta. Deletions within the signal peptide domains also impaired plastid import, showing that the presence of F at the N-terminus of the transit peptide together with a cleavable signal peptide is crucial for plastid import. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. Gruber and S. Vugrinec contributed equally to this work.  相似文献   

8.
Currently 18 hereditary neurological diseases are known to be associated with such mutations as multiple insertions of a single amino acid into the protein sequence. Therefore, investigation of the functional purpose of simple amino acid motifs becomes an important biological task. In this work, we studied the frequencies of motifs consisting of six identical amino acids and of simple six-amino-acid motifs consisting of two randomly located amino acids. The investigation was conducted on three eukaryotic proteomes of the well-studied model organisms, Homo sapiens, Drosophila melanogaster, and Caenorhabditis elegans. We showed that many simple motifs occurred very frequently; the data on the frequency were presented at These results suggest such motifs to be responsible for common functions of non-homologous and unrelated proteins in different organisms.  相似文献   

9.
Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low-Fe stress-induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low-Fe stress, diatoms alter plastid-specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid-localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well-studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid-enriched fractions from Thalassiosira pseudonana to gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry-based peptide identification and quantification, we analyzed T. pseudonana grown under Fe-replete and -limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light-harvesting proteins. In silico localization predictions of proteins identified in this plastid-enriched proteome allowed for an in-depth comparison of theoretical versus observed plastid-localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.  相似文献   

10.
Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.  相似文献   

11.
Even though scanning electron microscopy (SEM) is now needed to identify some species of diatoms, the majority of identifications and quantification of these organisms in ecological works is accomplished with a light microscope, using transmitted light optical methods. In this paper we demonstrate the use of interference reflection contrast (incident light) for the examination of diatoms, a method that significantly improves the resolution of structural detail, and therefore, identification of diatom taxa with light microscopy. Using incident light we were routinely able to distinguish between structures that were close to the theoretical limit of resolution for visible light, and that were not resolvable with such standard transmitted light techniques as phase contrast and differential interference contrast (DIC). Light microscopes with epi-illumination light paths can be easily and inexpensively outfitted to use this simple technique.
Abbreviations:  DIC, differential interference contrast; IRC, interference reflection contrast; LM, light microscopy  相似文献   

12.
Several groups of algae evolved by secondary endocytobiosis, which is defined as the uptake of a eukaryotic alga into a eukaryotic host cell and the subsequent transformation of the endosymbiont into an organelle. Due to this explicit evolutionary history such algae possess plastids that are surrounded by either three or four membranes. Protein targeting into plastids of these organisms depends on N-terminal bipartite presequences consisting of a signal and a transit peptide domain. This suggests that different protein targeting systems may have been combined during establishment of secondary endocytobiosis to enable the transport of proteins into the plastids. Here we demonstrate the presence of an apparently new type of transport into diatom plastids. We analyzed protein targeting into the plastids of diatoms and identified a conserved amino acid sequence motif within plastid preprotein targeting sequences. We expressed several diatom plastid presequence:GFP fusion proteins with or without modifications within that motif in the diatom Phaeodactylum tricornutum and found that a single conserved phenylalanine is crucial for protein transport into the diatom plastids in vivo, thus indicating the presence of a so far unknown new type of targeting signal. We also provide experimental data about the minimal requirements of a diatom plastid targeting presequence and demonstrate that the signal peptides of plastid preproteins and of endoplasmic reticulum-targeted preproteins in diatoms are functionally equivalent. Furthermore we show that treatment of the cells with Brefeldin A arrests protein transport into the diatom plastids suggesting that a vesicular transport step within the plastid membranes may occur.  相似文献   

13.
The amino acid sequence for vitamin D-dependent bovine intestinal calcium binding protein has been established. It contains 85 amino acids in a single chain and lacks cysteine, tryptophan, methionine, histidine, and arginine. The NH2-terminal lysine is blocked by an N-acetyl group. Enzymatic digestion with trypsin, chymotrypsin, and pepsin yielded a number of peptides which were purified by two-dimensional high voltage paper electrophoresis. These peptides were examined by end group analysis and sequenced by the dansyl procedure. The absence of tryptophan permitted by a single cleavage of the molecule by N-bromosuccinimide at the tyrosine residue at position 8 and the larger fragment was subjected to automated Edman degradation. By these means, the following sequence was established: N-Ac-Lys-Gln-Ser-Pro-Leu-Glu-Tyr-Ala-Ala-Glu-Lys-Ser-Ile-Gln-Lys-Glu-Ile-Glu-Lys-Gly-Phe-Phe-Lys-Gln-Leu-Leu-Val-Ser-Val-Gln-Lys-Ala-Gly-Asp-Lys-Glu-Ser-Leu-Gln-Pro-Leu-Phe-Thr-Leu-Leu-Lys-Ser-Gly-Pro-Glu-Glu-Asn-Leu-Lys-Glu-Ser-Gln-Asn-Gly-Pro-Asp-Leu-Ls7-Ser-Gly-Pro-Gly-Asn-Asp-Leu-Glu-Glu-Lys-Gly-Thr-Asp-Val-Phe-Ser-Leu-Lys-Gln. Microheterogeneity may exist in the molecule at residue 76 in which position threonine may be replaced by serine. Comparison of the sequence of calcium-binding protein to the "test" sequence of Tufty and Kretsinger ((1975) Science 187, 167-169) proposed to identify E-F hands in muscle proteins suggests that intestinal calcium-binding protein may likewise contain one or possibly two E-F hands which could account for calcium-binding property. Dayhoff alignment scores, however, calculated for calcium-binding protein against nine E-F hands in muscle proteins parvalbumin, troponin and alkali light chains do not indicate that intestinal calcium-binding protein is homologous to these muscle protein chains.  相似文献   

14.
The relationship between the diadinoxanthin cycle and changes in fluorescence yield in the diatom Chaetoceros muelleri Lemm. (clone CH10, Amorient Aquafarm, Inc., Hawaii) was investigated. High-light-induced changes in fluorescence yield and xanthophyll de-epoxidation occurred very rapidly (first order rate constant 1.60 min?1). The observed light-induced changes in diatoxanthin and diadinoxanthin concentration were consistent with a two-pool scheme for diadinoxanthin, one of which does not undergo de-epoxidation. Changes in xanthophyll concentration correlated with changes in in vivo absorbance indicating that diadinoxanthin cycle activity in vivo can be monitored spectrophotometrically. However, changes in cell absorbance were small relative to total optical absorption cross section. Increases in the concentration of diatoxanthin were linearly correlated with increases in the rate constant for thermal de-excitation in the antenna of photosystem II (PSII). Antenna quenching produced or mediated by diatoxanthin may, thus, protect the PSII reaction center in diatoms. Changes in the maximum fluorescence yield suggested that changes in the reaction center also contributed to nonphotochemical quenching of fluorescence. Thus, reaction center quenching affected the relationship between antenna quenching and changes in photochemical efficiency producing the effect of a decrease in fluorescence yield without a decrease in photochemical efficiency.  相似文献   

15.
16.
17.
Irina Grouneva 《BBA》2009,1787(7):929-5353
Intact cells of diatoms are characterized by a rapid diatoxanthin epoxidation during low light periods following high light illumination while epoxidation is severely restricted in phases of complete darkness. The present study shows that rapid diatoxanthin epoxidation is dependent on the availability of the cofactor of diatoxanthin epoxidase, NADPH, which cannot be generated in darkness due to the inactivity of PSI. In the diatom Phaeodactylum tricornutum, NADPH production during low light is dependent on PSII activity, and addition of DCMU consequently abolishes diatoxanthin epoxidation. In contrast to P. tricornutum, DCMU does not affect diatoxanthin epoxidation in Cyclotella meneghiniana, which shows the same rapid epoxidation in low light both in the absence or presence of DCMU. Measurements of the reduction state of the PQ pool and PSI activity indicate that, in the presence of DCMU, NADPH production in C. meneghiniana occurs via alternative electron transport, which includes electron donation from the chloroplast stroma to the PQ pool and, in a second step, from PQ to PSI. Similar electron flow to PQ is also observed during high light illumination of DCMU-treated P. tricornutum cells. In contrast to C. meneghiniana, the electrons are not directed to PSI, but most likely to a plastoquinone oxidase. This chlororespiratory electron transport leads to the establishment of an uncoupler-sensitive proton gradient in the presence of DCMU, which induces diadinoxanthin de-epoxidation and NPQ. In C. meneghiniana, electron flow to the plastoquinone oxidase is restricted, and consequently, diadinoxanthin de-epoxidation and NPQ is not observed after addition of DCMU.  相似文献   

18.
19.
Abstract: An exponential dynamic light regime with prolonged dark periods (light/dark cycle 8/40 h) was used to simulate deep mixing of algae in natural waters and to investigate the adaptation of the diatom Phaeodactylum tricornutum to these extreme light conditions. After prolonged dark periods Phaeo dactylum cells showed surprisingly high contents of diatoxan-thin, low photosynthetic efficiency and high non-photochemical quenching (NPQ) of chlorophyll fluorescence. Diatoxanthin con centrations and NPQ were low at the beginning of the dark peri od and increased with the duration of the dark incubation. Addi tion of the diadinoxanthin de-epoxidase inhibitor, DTT, prevent ed the formation of diatoxanthin, thereby excluding de novo synthesis of diatoxanthin during the prolonged dark period. Evi dence of chlororespiratory electron flow and the establishment of a diadinoxanthin de-epoxidase activating proton gradient in the dark was derived from two observations. First, uncoupling of electron transport with NH4CI at the beginning of the dark period prevented the development of non-photochemical quenching of chlorophyll fluorescence and the formation of diatoxanthin during the dark period. Second, inhibition of the electron and proton consuming terminal redox component of chlororespiratory electron transport, cytochrome oxidase, by addition of KCN induced stronger NPQ and a higher de-epoxidation state of the xanthophyll cycle. These results strongly indi cate that the activation of diadinoxanthin de-epoxidase in the dark is the consequence of a chlororespiratory proton gradient. We furthermore present evidence that diatoxanthin formed by the chlororespiratory proton gradient has the same efficiency in the mechanism of enhanced heat dissipation as diatoxanthin induced by a light-driven ApH.  相似文献   

20.
Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these metabolic pathways and the paucity of Rosetta Stones relative to the total number of multifunctional proteins suggests that the proteome of oomycetes has few features in common with other Kingdoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号