首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
程曦  田彩娟  李爱宁  邱金龙 《遗传》2012,34(2):134-144
植物在与病原微生物共同进化过程中形成了复杂的免疫防卫体系。植物的先天免疫系统可大致分为两个层面。第一个层面的免疫基于细胞表面的模式识别受体对病原物相关分子模式的识别, 该免疫过程被称为病原物相关分子模式触发的免疫(PAMP-triggered immunity, PTI), 能帮助植物抵抗大部分病原微生物; 第二个层面的免疫起始于细胞内部, 主要依靠抗病基因编码的蛋白产物直接或间接识别病原微生物分泌的效应子并且激发防卫反应, 来抵抗那些能够利用效应子抑制第一层面免疫的病原微生物, 这一过程被称为效应子触发的免疫(Effector-triggered immunity, ETI)。这两个层面的免疫都是基于植物对“自我”及“非我”的识别, 依靠MAPK级联等信号网络, 将识别结果传递到细胞核内, 调控相应基因的表达, 做出适当的免疫应答。本文着重阐述了植物与病原微生物互作过程中不同层面的免疫反应所发生主要事件的分子基础及研究进展。  相似文献   

2.
植物与病原微生物互作分子基础的研究进展   总被引:4,自引:0,他引:4  
Cheng X  Tian CJ  Li AN  Qiu JL 《遗传》2012,34(2):134-144
植物在与病原微生物共同进化过程中形成了复杂的免疫防卫体系。植物的先天免疫系统可大致分为两个层面。第一个层面的免疫基于细胞表面的模式识别受体对病原物相关分子模式的识别,该免疫过程被称为病原物相关分子模式触发的免疫(PAMP-triggered immunity,PTI),能帮助植物抵抗大部分病原微生物;第二个层面的免疫起始于细胞内部,主要依靠抗病基因编码的蛋白产物直接或间接识别病原微生物分泌的效应子并且激发防卫反应,来抵抗那些能够利用效应子抑制第一层面免疫的病原微生物,这一过程被称为效应子触发的免疫(Effector-triggered immunity,ETI)。这两个层面的免疫都是基于植物对"自我"及"非我"的识别,依靠MAPK级联等信号网络,将识别结果传递到细胞核内,调控相应基因的表达,做出适当的免疫应答。本文着重阐述了植物与病原微生物互作过程中不同层面的免疫反应所发生主要事件的分子基础及研究进展。  相似文献   

3.
4.
Jasmonates as Signals in the Wound Response   总被引:35,自引:0,他引:35  
Plant responses to wounding and herbivore attack are orchestrated by complex signaling pathways that link the production of chemical and physical signals at the wound site to activation of gene expression and other cellular processes. The systemic nature of many wound-induced responses provides an attractive opportunity to study intercellular signaling pathways that operate over long distances within the plant. Genetic dissection of the wound-response pathway in tomato indicates that (1) systemin and its precursor protein, prosystemin, are upstream components of an intercellular signaling cascade that requires the biosynthesis and action of jasmonic acid (JA); and (2) physiological processes regulated by this pathway confer host resistance to a broad spectrum of plant invaders. Grafting experiments conducted with mutants defective in systemic wound signaling indicate that systemin functions at or near the wound site to trigger the production of JA, which in turn acts non-cell autonomously to promote systemic defense responses. The location of JA biosynthetic enzymes within the companion cell-sieve element complex of vascular bundles, together with the accumulation of JA in vascular tissues, support a role for jasmonates as phloem-mobile signals. The recent discovery of enzymes involved in the metabolism of JA to volatile methyl-JA and bioactive JA-amino acid conjugates has potential implications for the mechanism by which JA promotes wound signaling. Species-specific differences in the mechanism of wound signaling appear to reflect the way in which the wound-induced jasmonate pathway is regulated by other signals including systemin, cell wall-derived oligosaccharides, ethylene, and insect-derived elicitors. Adding to the complexity of the wound-induced jasmonate cascade are wound-signaling pathways that operate independently of JA.  相似文献   

5.
6.
It is well recognized that salicylic acid (SA) acts as a natural signaling molecule involved in both local and systemic plant defense responses upon attacks by pathogens. Recently, cellular SA receptors and a number of SA-related phloem-mobile signals were identified. Here, we compare the old and up-to-date concepts of plant defense signaling events involving SA. Finally, the crosstalk between intracellular and extracellular SA signaling events leading to long-distance spread of signals was outlined by focusing on the modes of both the short- and long-distance signaling events involving the actions of SA. For the above purpose, two distinct conceptual models for local SA perception and signaling mechanisms in the intracellular and extracellular paths (referred to as models i and ii, respectively) were proposed. In addition to two local SA perception models, we propose that the long-distance SA action could be attributed to three different modes, namely, (iii) local increase in SA followed by transport of SA and SA intermediates, (iv) systemic propagation of SA-derived signals with both chemical and electrical natures without direct movement of SA, and (v) integrated crosstalk allowing alternately repeated secondary signal propagation and biosynthesis of SA and/or conversion of inert SA intermediates to free SA finally contributing to the systemic spread of SA-derived signals. We review here that the long-distance SA signaling events (models iii–v), inevitably involve the mechanisms described in the local signaling models (models i and ii) as the key pieces of the crosstalk.  相似文献   

7.
生物和非生物逆境胁迫下的植物系统信号   总被引:2,自引:0,他引:2  
复杂多变的自然环境使植物进化出许多适应策略, 其中由局部胁迫引起的系统响应广泛存在, 精细调节植物的生长发育和环境适应能力。植物系统响应的诱导因素首先引起植物从局部到全株范围的信号转导, 这类信号称为系统信号。当受到外界刺激时, 植物首先在受刺激细胞内触发化学信号分子的变化, 如茉莉酸和水杨酸甲酯等在浓度和信号强度方面发生变化; 进而, 伴随着一系列复杂的信号转换, 多种信号组分共同完成系统响应的激活。植物激素、小分子肽和RNA等被认为是缓慢系统信号通路中的关键组分, 而目前也有大量研究阐释了由活性氧、钙信号和电信号相互偶联组成的快速系统信号通路。植物系统信号对其生存和繁衍至关重要, 其精确的转导机制仍值得深入研究。该文综述了植物响应环境的系统信号转导研究进展, 对关键的系统信号组分及其转导机制进行了总结, 同时对植物系统信号传递的研究方向进行了展望。  相似文献   

8.
植物抗病基因结构、功能及其进化机制研究进展   总被引:9,自引:0,他引:9  
植物与病原菌在长期的共进化和相互选择的过程中,逐渐形成了组织障碍、非寄主抗性和小种专化抗性等有效的防御机制。小种专化抗性(基因对基因抗性)主要是由植物抗病基因识别相应的病原菌无毒基因并激活植物体内抗病信号进而抵御病原菌的侵染。从目前已克隆的 70 多个抗病基因来看,它们在结构上具有高度保守性,主要包括核苷酸结合位点(NBS),亮氨酸重复结构(LRR), 蛋白激酶结构域(PK), 果蝇蛋白 Toll 和哺乳动物蛋白质白细胞介素 1 受体[interleukin(IL)-1 receptor]类似结构域(TIR), 双螺旋结构(CC)或亮氨酸拉链(LZ)和跨膜结构域(TM)等,其在抗病基因与病原菌无毒(效应)蛋白互作以及植物内部免疫信号传导中起着重要的作用。同时,抗病基因又通过基因复制、遗传重组等进化机制形成多基因家族,为植物抗病的专化性和多样性提供了重要的遗传基础。本文主要讨论了近来已克隆抗病基因的结构特征、功能以及抗病基因进化机制研究的进展。  相似文献   

9.
Interplay of signaling pathways in plant disease resistance   总被引:49,自引:0,他引:49  
Plants are under constant threat of infection by pathogens armed with a diverse array of effector molecules to colonize their host. Plants have, in turn, evolved sophisticated detection and response systems that decipher pathogen signals and induce appropriate defenses. Genetic analysis of plant mutants impaired in mounting a resistance response to invading pathogens has uncovered a number of distinct, but interconnecting, signaling networks that are under both positive and negative control. These pathways operate, at least partly, through the action of small signaling molecules such as salicylate, jasmonate and ethylene. The interplay of signals probably allows the plant to fine-tune defense responses in both local and systemic tissue.  相似文献   

10.
Damage inflicted by herbivore feeding necessitates multiple defense strategies in plants. The wound site must be sealed and defense responses mounted against the herbivore itself and against invading opportunistic pathogens. These defenses are controlled both in time and space by highly complex regulatory networks that themselves are modulated by interactions with other signaling pathways. In this review, we describe the signaling events that occur in individual wounded leaves, in systemic unwounded regions of the plant, and between the plant, and other organisms, and attempt to place these events in the context of a coordinated system. Key signals that are discussed include ion fluxes, active oxygen species, protein phosphorylation cascades, the plant hormones jasmonic acid, ethylene, abscisic acid and salicylic acid, peptide signals, glycans, volatile chemicals, and physical signals such as hydraulic and electrical signals. Themes that emerge after consideration of the published data are that glycans and peptide elicitors are likely primary triggers of wound-induced defense responses and that they function through the action of jasmonic acid, a central mediator of defense gene expression, whose effect is modulated by ethylene. In the field, wound signaling pathways are significantly impacted on by other stress response pathways, including pathogen responses that often operate through potentially antagonistic signals such as salicylic acid. However, gross generalisations are not possible because some wound and pathogen responses operate through common jasmonate- and ethylene-dependent pathways. Understanding the ways in which local and systemic wound signaling pathways are coordinated individually and in the context of the plants wider environment is a key challenge in the application of this science to crop-protection strategies.  相似文献   

11.
Insects that reprogram host plants during colonization remind us that the insect side of plant–insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other – omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers “early danger signals” in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three “early danger signals” and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same “early danger signals” and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the “danger signals” of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with “early danger signals” of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.  相似文献   

12.
吴楠  覃磊  彭志红  夏石头 《植物学报》2022,57(4):412-421
系统获得性抗性(SAR)是一种因病原微生物初次侵染植物局部叶片而被激活的整株水平上的持久广谱抗性。在初次侵染部位快速产生的抗性信号,可通过韧皮部传输到植物其它部位,从而激活SAR。哌啶酸/N-羟基哌啶酸(Pip/NHP)作为新发现的移动信号分子,在SAR信号通路中具有重要作用。该文综述了Pip/NHP的合成、转运以及对SAR调控作用的最新研究进展。  相似文献   

13.
Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C6 green-leaf volatiles and C4 bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.  相似文献   

14.
Cell death is a biological process that occurs during differentiation and maturation of certain cell types, during senescence, or as part of a defense mechanism against microbial pathogens. Intercellular coordination is thought to be necessary to restrict the spread of death signals, although little is known about how cell death is controlled at the tissue level. The recent characterization of a plasmodesmal protein, PDLP5, has revealed an important role for plasmodesmal control during salicylic acid-mediated cell death responses. Here, we discuss molecular factors that are potentially involved in PDLP5 expression, and explore possible signaling networks that PDLP5 interacts with during basal defense responses.  相似文献   

15.
Plants have an efficient system of innate immunity that is based on the effective detection of potentially harmful microorganisms and rapid induction of defense responses. The first level of plant immunity is basal immunity, which is induced by the conserved molecular structures of microbes, such as bacterial flagellins or fungal chitin, or molecules that result from the interaction of plants with pathogens, for example oligosaccharides and peptides (“danger signals”). Plants recognize these inducers through receptors localized to the plasma membrane, represented mainly by receptor-like protein kinases or receptor-like proteins. Activation of the receptor by a ligand triggers a complex network of signaling events, which eventually cause an array of plant defense responses to prevent further spread of the pathogen.  相似文献   

16.
Salicylic acid (SA) is an important signaling molecule in local and systemic plant resistance. Following infection by microbial pathogens and the initial oxidative burst in plants, SA accumulation functions in the amplification of defense gene expression. Production of pathogenesis-related proteins and toxic antimicrobial chemicals serves to protect the plant from infection. Successful microbial pathogens utilize a variety of mechanisms to rid themselves of toxic antimicrobial compounds. Important among these mechanisms are multidrug-resistance pumps that bring about the active efflux of toxic compounds from microbial cells. Here, we show that a combination SA and its precursors, t-cinnamic acid and benzoic acid, can activate expression of specific multidrug efflux pump-encoding genes in the plant pathogen Erwinia chrysanthemi and enhance survival of the bacterium in the presence of model as well as plant-derived antimicrobial chemicals. This ability of plant-pathogenic bacteria to co-opt plant defense-signaling molecules to activate multidrug efflux pumps may have evolved to ensure bacterial survival in susceptible host plants.  相似文献   

17.
18.
Extracellular nucleotides are danger signals involved in recognition and control of intracellular pathogens. They are an important component of the innate immune response against intracellular pathogens, inducing the recruitment of inflammatory cells, stimulating secretion of cytokines, and producing inflammatory mediators such as reactive oxygen species (ROS) and nitric oxide (NO). In the case of extracellular ATP, some of the immune responses are mediated through activation of the NLRP3 inflammasome and secretion of the cytokine, interleukin-1β (IL-1β), through a mechanism dependent on ligation of the P2X7 receptor. Here we review the role of extracellular nucleotides as sensors of intracellular bacteria and protozoan parasites, and discuss how these pathogens manipulate purinergic signaling to diminish the immune response against infection.  相似文献   

19.
Plant genes participating in the recognition of aphid herbivory in concert with plant genes involved in defense against herbivores mediate plant resistance to aphids. Several such genes involved in plant disease and nematode resistance have been characterized in detail, but their existence has only recently begun to be determined for arthropod resistance. Hundreds of different genes are typically involved and the disruption of plant cell wall tissues during aphid feeding has been shown to induce defense responses in Arabidopsis, Triticum, Sorghum, and Nicotiana species. Mi‐1.2, a tomato gene for resistance to the potato aphid, Macrosiphum euphorbiae (Thomas), is a member of the nucleotide‐binding site and leucine‐rich region Class II family of disease, nematode, and arthropod resistance genes. Recent studies into the differential expression of Pto‐ and Pti1‐like kinase genes in wheat plants resistant to the Russian wheat aphid, Diuraphis noxia (Mordvilko), provide evidence of the involvement of the Pto class of resistance genes in arthropod resistance. An analysis of available data suggests that aphid feeding may trigger multiple signaling pathways in plants. Early signaling includes gene‐for‐gene recognition and defense signaling in aphid‐resistant plants, and recognition of aphid‐inflicted cell damage in both resistant and susceptible plants. Furthermore, signaling is mediated by several compounds, including jasmonic acid, salicylic acid, ethylene, abscisic acid, giberellic acid, nitric oxide, and auxin. These signals lead to the development of direct chemical defenses against aphids and general stress‐related responses that are well characterized for a number of abiotic and biotic stresses. In spite of major plant taxonomic differences, similarities exist in the types of plant genes expressed in response to feeding by different species of aphids. However, numerous differences in plant signaling and defense responses unique to specific aphid–plant interactions have been identified and warrant further investigation.  相似文献   

20.

Background  

Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号