首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Most plant intracellular immune receptors belong to nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between NLRs and their corresponding pathogen effectors often triggers a hypersensitive response (HR) at the pathogen infection sites. The nicotinate N-methyltransferase (NANMT) is responsible for the conversion of nicotinate to trigonelline in plants. However, the role of NANMT in plant defence response is unknown. In this study, we demonstrated that the maize ZmNANMT, but not its close homolog ZmCOMT, an enzyme in the lignin biosynthesis pathway, suppresses the HR mediated by the autoactive NLR protein Rp1-D21 and its N-terminal coiled-coil signalling domain (CCD21). ZmNANMT, but not ZmCOMT, interacts with CCD21, and they form a complex with HCT1806 and CCoAOMT2, two key enzymes in lignin biosynthesis, which can also suppress the autoactive HR mediated by Rp1-D21. ZmNANMT is mainly localized in the cytoplasm and nucleus, and either localization is important for suppressing the HR phenotype. These results lay the foundation for further elucidating the molecular mechanism of NANMTs in plant disease resistance.  相似文献   

3.
Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR) proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR). Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC), a nucleotide binding (NB-ARC) and a leucine rich repeat (LRR) domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.  相似文献   

4.
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant–pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.  相似文献   

5.
6.
Genes at the Rp1 rust resistance locus of maize confer race-specific resistance to the common rust fungus Puccinia sorghi. Three variant genes with nonspecific effects (HRp1 -Kr1N, -D*21 and -MD*19) were found to be generated by intragenic crossing over within the LRR region. The LRR region of most NBS-LRR encoding genes is quite variable and codes for one of the regions in resistance gene proteins that controls specificity. Sequence comparisons demonstrated that the Rp1-Kr1N recombinant gene was identical to the N-terminus of the rp1-kp2 gene and C-terminus of another gene from its HRp1-K grandparent. The Rp1-D*21 recombinant gene consists of the N-terminus of the rp1-dp2 gene and C-terminus of the Rp1-D gene from the parental haplotype. Similarly, a recombinant gene from the Rp1-MD*19 haplotype has the N-terminus of an rp1 gene from the HRp1-M parent and C-terminus of the rp1-D19 gene from the HRp1-D parent. The recombinant Rp1 -Kr1N, -D*21 and -MD*19 genes activated defense responses in the absence of their AVR proteins triggering HR (hypersensitive response) in the absence of the pathogen. The results indicate that the frequent intragenic recombination events that occur in the Rp1 gene cluster not only recombine the genes into novel haplotypes, but also create genes with nonspecific effects. Some of these may contribute to nonspecific quantitative resistance but others have severe consequences for the fitness of the plant.  相似文献   

7.
8.
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) act as intracellular sensors for pathogen-derived effector proteins and trigger an immune response, frequently resulting in the hypersensitive cell death response (HR) of the infected host cell. The wheat (Triticum aestivum) NLR Pm2 confers resistance against the fungal pathogen Blumeria graminis f. sp. tritici (Bgt) if the isolate contains the specific RNase-like effector AvrPm2. We identified and isolated seven new Pm2 alleles (Pm2e–i) in the wheat D-genome ancestor Aegilops tauschii and two new natural AvrPm2 haplotypes from Bgt. Upon transient co-expression in Nicotiana benthamiana, we observed a variant-specific HR of the Pm2 variants Pm2a and Pm2i towards AvrPm2 or its homolog from the AvrPm2 effector family, BgtE-5843, respectively. Through the introduction of naturally occurring non-synonymous single nucleotide polymorphisms and structure-guided mutations, we identified single amino acids in both the wheat NLR Pm2 and the fungal effector proteins AvrPm2 and BgtE-5843 responsible for the variant-specific HR of the Pm2 variants. Exchanging these amino acids led to a modified HR of the Pm2–AvrPm2 interaction and allowed the identification of the effector head epitope, a 20-amino-acid long unit of AvrPm2 involved in the HR. Swapping of the AvrPm2 head epitope to the non-HR-triggering AvrPm2 family member BgtE-5846 led to gain of a HR by Pm2a. Our study presents a molecular approach to identify crucial effector surface structures involved in the HR and demonstrates that natural and induced diversity in an immune receptor and its corresponding effectors can provide the basis for understanding and modifying NLR–effector specificity.  相似文献   

9.
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)‐like cell death, accompanied by H2O2 generation and increased PR1 expression. Mannose‐binding lectins surfactant protein D (SP‐D), cyanovirin‐N (CV‐N) and human mannose‐binding lectin (hMBL) also induce salicylic acid (SA)‐dependent HR‐like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α‐xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co‐expression of SA‐degrading enzyme NahG, providing strategies for enhancing expression of oligomannose‐binding lectins in plants.  相似文献   

10.
The biocontrol agent Pythium oligandrum and its elicitin‐like proteins oligandrins have been shown to induce disease resistance in a range of plants. In the present study, the ability of two oligandrins, Oli‐D1 and Oli‐D2, to induce an immune response and the possible molecular mechanism regulating the defence responses in Nicotiana benthamiana and tomato were investigated. Infiltration of recombinant Oli‐D1 and Oli‐D2 proteins induced a typical immune response in N. benthamiana including the induction of a hypersensitive response (HR), accumulation of reactive oxygen species and production of autofluorescence. Agrobacterium‐mediated transient expression assays revealed that full‐length Oli‐D1 and Oli‐D2 were required for full HR‐inducing activity in N. benthamiana, and virus‐induced gene silencing‐mediated knockdown of some of the signalling regulatory genes demonstrated that NbSGT1 and NbNPR1 were required for Oli‐D1 and Oli‐D2 to induce HR in N. benthamiana. Subcellular localization analyses indicated that both Oli‐D1 and Oli‐D2 were targeted to the plasma membrane of N. benthamiana. When infiltrated or transiently expressed in leaves, Oli‐D1 and Oli‐D2 induced resistance against Botrytis cinerea in tomato and activated the expression of a set of genes involved in the jasmonic acid/ethylene (JA/ET)‐mediated signalling pathway. Our results demonstrate that Oli‐D1 and Oli‐D2 are effective elicitors capable of inducing immune responses in plants, probably through the JA/ET‐mediated signalling pathway, and that both Oli‐D1 and Oli‐D2 have potential for the development of bioactive formulae for crop disease control in practice.  相似文献   

11.
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants.  相似文献   

12.
The Rp3 locus of maize conditions race-specific resistance to a fungal rust pathogen, Puccinia sorghi. Both morphological and DNA markers were employed to characterize alleles of Rp3 and to accurately position Rp3 on the maize genetic map. DNA marker polymorphisms distinctive to each Rp3 allele were identified, allowing the identification of specific Rp3 alleles in cases where rust races that differentiate particular alleles are not available. In a population of 427 progeny, Rp3 and Rg1 were found to be completely linked, while Lg3 was approximately 3 cM proximal on the long arm of chromosome 3. In this same population, 12 RFLP markers were mapped relative to Rp3; the closest markers were UMC102 (about 1cM distal to Rp1) and NPI114 (1–2 cM proximal). These and additional DNA probes were used to characterize the nature and extent of flanking DNA that was carried along when six different Rp3 alleles were backcrossed into a single background. Depending upon the allele investigated, a minimum of 2–10cM of polymorphic DNA flanking the Rp3 locus was retained through the introgression process. In addition, many of the probes that map near Rp3 were found to detect an additional fragment in the Rp3 region, indicating that portions of this chromosomal segment have been tendemly duplicated. The materials and results generated will permit marker-assisted entry of Rp3 into different maize backgrounds and lay the foundation for the eventual map-based cloning of Rp3.  相似文献   

13.
Only a limited number of dominant resistance genes acting against plant viruses have been cloned, and further functional studies of these have been almost entirely limited to the resistance genes Rx against Potato virus X (PVX) and N against Tobacco mosaic virus (TMV). Recently, the cell‐to‐cell movement protein (NSM) of Tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant (Avr) of Sw‐5b‐mediated resistance, a dominant resistance gene which belongs to the class of SD‐CC‐NB‐LRR (Solanaceae domain‐coiled coil‐nucleotide‐binding‐leucine‐rich repeat, SD‐CNL) resistance genes. On transient expression of the NSM protein in tomato and transgenic Nicotiana benthamiana harbouring the Sw‐5b gene, a hypersensitive cell death response (HR) is triggered. Here, it is shown that high accumulation of the Sw‐5b protein in N. benthamiana leaves, achieved by co‐expression of the Sw‐5b protein with RNA silencing suppressors (RSSs), leads to auto‐activity in the absence of NSM. In a similar approach, Sw‐5a, the highest conserved paralogue of Sw‐5b from Solanum peruvianum, also triggered HR by auto‐activation, whereas the highest conserved orthologue from susceptible S. lycopersicum, named Sw‐5aS, did not. However, neither of the last two homologues was able to trigger an NSM‐dependent HR. Truncated and mutated versions of these Sw‐5 proteins revealed that the NB‐ARC [nucleotide‐binding adaptor shared by Apaf‐1 (from humans), R proteins and CED‐4 (from nematodes)] domain is sufficient for the triggering of HR and seems to be suppressed by the SD‐CC domain. Furthermore, a single mutation was sufficient to restore auto‐activity within the NB‐ARC domain of Sw‐5aS. When the latter domain was fused to the Sw‐5b LRR domain, NSM‐dependent HR triggering was regained, but not in the presence of its own Sw‐5aS LRR domain. Expression analysis in planta revealed a nucleocytoplasmic localization pattern of Sw‐5b, in which the SD‐CC domain seems to be required for nuclear translocation. Although the Sw‐5 N‐terminal CC domain, in contrast with Rx, contains an additional SD, most findings from this study support a conserved role of domains within NB‐LRR (NLR) proteins against plant viruses.  相似文献   

14.
Three new cytochalasins Z21–Z23 ( 1 – 3 , resp.), together with five analogs, 4 – 8 , were isolated from Spicaria elegans KLA03 by the OSMAC (one strain‐many compounds) approach with adding L ‐ and D ‐tryptophan during its cultivation. The structures of new cytochalasins were elucidated on the basis of comprehensive 1D‐ and 2D‐NMR and HR‐ESI‐MS analyses. Cytochalasins Z21 and Z22 ( 1 and 2 , resp.), and compound 5 showed cytotoxic activities against A‐549 cell lines with IC50 values of 8.2, 20.0, and 3.1 μM , respectively.  相似文献   

15.
NLR (nucleotide‐binding [NB] leucine‐rich repeat [LRR] receptor) proteins are critical for inducing immune responses in response to pathogen proteins, and must be tightly modulated to prevent spurious activation in the absence of a pathogen. The ZAR1 NLR recognizes diverse effector proteins from Pseudomonas syringae, including HopZ1a, and Xanthomonas species. Receptor‐like cytoplasmic kinases (RLCKs) such as ZED1, interact with ZAR1 and provide specificity for different effector proteins, such as HopZ1a. We previously developed a transient expression system in Nicotiana benthamiana that allowed us to demonstrate that ZAR1 function is conserved from the Brassicaceae to the Solanaceae. Here, we combined structural modelling of ZAR1, with molecular and functional assays in our transient system, to show that multiple intramolecular and intermolecular interactions modulate ZAR1 activity. We identified determinants required for the formation of the ZARCC oligomer and its activity. Lastly, we characterized intramolecular interactions between ZAR1 subdomains that participate in keeping ZAR1 immune complexes inactive. This work identifies molecular constraints on immune receptor function and activation.  相似文献   

16.
This study estimated the construction const (CC) and maintenance cost (MC) of leaf tissue on the basis of dry mass (CCMass, MCMass) and leaf area (CCArea, MCArea), as well as the maximum leaf gas exchange capacity, so as to examine leaf cost:benefit relationship in six dominant species of the ‘Bana’ vegetation. Minimum and maximum CCMass averaged 1.71 ± 0.03 and 1.78 ± 0.03 g glucose g−1. The CCMass showed a statistically significant positive correlation with crude fibre, and tended to decline as leaves were larger. Thus, smaller leaves tended to be built out of a more expensive material than that found in species bearing larger leaves. The average CCArea of the ‘Bana’ species was 376 ± 15 g glucose m−2. A robust correlation was found between CCArea with leaf dry mass to leaf area ratio, as well as with leaf thickness, but not with leaf density. MCMass (g glucose g−1 day−1) and MCArea (g glucose m−2 day−1) were positively correlated. Maximum and minimum MCMass increased significantly with protein and lipid content, respectively. Maximum carbon assimilation (A max) was positively correlated with CCArea. All the species operated at high stomatal conductance (g s) and C i/C a which suggested low short-term water use efficiency. Potential nitrogen use efficiency (PNUE = A max/N) averaged 35.4 ± 1.8 mmol CO2 mol−1 N. As the sclerophylly index (g crude fibre g−1 protein) increased, the ratio of CCArea to A max increased significantly. This result suggests a trade-off between investments in an expensive resistant sclerophyllous leaf which should maximize carbon gain in the long term.  相似文献   

17.
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.  相似文献   

18.
Cell–cell and cell–matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell–cell (JCC) and cell–matrix (JMC) adhesive interactions are systematically varied to represent different, biologically relevant adhesive conditions. Chemotactically induced cell migration is also addressed. Starting from a cluster of cells, variations in relative cell adhesion alone lead to different cellular patterns such as spreading of metastatic tumours and angiogenesis. The combination of low cell–cell adhesion (high JCC) and high heterotypic adhesion (low JMC) favours the fragmentation of the original cluster into multiple, smaller cell clusters (metastasis). Conversely, cellular systems exhibiting high-homotypic affinity (low JCC) preserve their original configuration, avoiding fragmentation (organogenesis). For intermediate values of JCC and JMC (i.e. JCC/JMC ~ 1), tubular and corrugated structures form. Fully developed vascular trees are assembled only in systems in which contact-inhibited chemotaxis is activated upon cell contact. Also, the rate of secretion, diffusion and sequestration of chemotactic factors, cell deformability and motility do not significantly affect these trends. Further developments of this computational model will predict the efficacy of therapeutic interventions to modulate the diseased microenvironment by directly altering cell cohesion.  相似文献   

19.
Recombination at the Rp1 locus of maize.   总被引:11,自引:0,他引:11  
Summary The Rp1 locus of maize determines resistance to races of the maize rust fungus (Puccinia sorghi). Restriction fragment length polymorphism markers that closely flank Rp1 were mapped and used to study the genetic fine structure and role of recombination in the instability of this locus. Susceptible progeny, lacking the resistance of either parent, were obtained from test cross progeny of several Rp1 heterozygotes. These susceptible progeny usually had non-parental genotypes at flanking marker loci, thereby verifying their recombinational origin. Seven of eight Rp1 alleles (or genes) studied were clustered within about 0.2 map units of each other. Rpl G, however, mapped from 1–3 map units distal to other Rp1 alleles. Rp5 also mapped distally to most Rp1 alleles. Other aspects of recombination at Rp1 suggested that some alleles carry duplicated sequences, that mispairing can occur, and that unequal crossing-over may be a common phenomenon in this region; susceptible progeny from an Rp1 A homozygote had recombinant flanking marker genotypes, and susceptible progeny from an Rp1 DlRp1 F heterozygote showed both possible nonparental flanking marker genotypes.  相似文献   

20.
Phytophthora infestans INF1 elicitin causes the hypersensitive response (HR) in Nicotiana benthamiana (Kamoun et al. in Plant Cell 10:1413–1425, 1998). To identify N. benthamiana proteins that interact with INF1, we carried out a yeast two-hybrid screen. This screen resulted in the isolation of a gene NbLRK1 coding for a novel lectin-like receptor kinase. NbLRK1 interacted with INF1 through its VIb kinase subdomain. Purified INF1 and NbLRK1 proteins also interacted in vitro. INF1 treatment of N. benthamiana leaves induced autophosphorylation of NbLRK1. Most importantly, virus-induced gene silencing (VIGS) of NbLRK1 delayed INF1-mediated HR in N. benthamiana. These data suggest that NbLRK1 is a component of the N. benthamiana protein complex that recognizes INF1 elicitor and transduces the HR signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号