首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhizomania is a serious disease of sugar beet, caused by beet necrotic yellow vein virus (BNYVV). The disease can only be controlled by the use of resistant cultivars. The accession Holly contains a single dominant gene for resistance, called Rz. The identification of a locus for resistance that differs from Rz would provide possibilities to produce cultivars with multiple resistance to BNYVV. Inheritance of resistance to BNYVV was studied by screening progenies of crosses between resistant plants of the accessions Beta vulgaris subsp. maritima WB42 and B. vulgaris subsp. vulgaris Holly-1–4 or R104. Observed and expected segregation ratios were compared to elucidate whether the resistance genes in the three accessions are alleles or situated on different loci. STS markers, linked to the genes for resistance, were used to study the segregation in more detail. The results demonstrated that the genes for resistance to BNYVV inHolly-1-4 and WB42 are closely linked. The gene for resistance in R104 is at the same locus as in Holly-1-4, and also closely linked to the gene in WB42. As the Holly resistance gene has been named Rz, the name Rz2 is proposed to refer to the resistance gene in WB42. Consequently, the gene Rz should be referred to as Rz1. Received: 29 October 1998 / Accepted: 12 March 1999  相似文献   

2.
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.  相似文献   

3.
Rhizomania, one of the most devastating diseases in sugar beet, is caused by Beet Necrotic Yellow Vein Virus (BNYVV) belonging to the genus Benyvirus. Use of sugar beet varieties with resistance to BNYVV is generally considered as the only way to maintain a profitable yield on rhizomania-infested fields. As an alternative to natural resistance, we explored the transgenic expression of viral dsRNA for engineering resistance to rhizomania. Transgenic plants expressing an inverted repeat of a 0.4 kb fragment derived from the BNYVV replicase gene displayed high levels of resistance against different genetic strains of BNYVV when inoculated using the natural vector, Polymyxa betae. The resistance was maintained under high infection pressures and over prolonged growing periods in the greenhouse as well as in the field. Resistant plants accumulated extremely low amounts of transgene mRNA and high amounts of the corresponding siRNA in the roots, illustrative of RNA silencing as the underlying mechanism. The transgenic resistance compared very favourably to natural sources of resistance to rhizomania and thus offers an attractive alternative for breeding resistant sugar beet varieties.  相似文献   

4.
5.
Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), is an important sugar-beet disease worldwide and can result in severe losses of root yield and sugar content. We have identified a major QTL for BNYVV resistance from a new source in a segregating population of 158 individuals. The QTL explained an estimated 78% of the observed phenotypic variation and the gene conferring the partial resistance is referred to as Rz4. AFLP was used in combination with bulked segregant analysis (BSA) to develop markers linked to the resistance phenotype. AFLP marker analysis was extended to produce a linkage map that was resolved into nine linkage groups. These were anchored to the nine sugar-beet chromosomes using previously published SNP markers. This represents the first anchored sugar-beet linkage map to be published with non-anonymous markers. The final linkage map comprised 233 markers covering 497.2 cM, with an average interval between markers of 2.1 cM. The Rz4 QTL and an Rz1 RAPD marker were mapped to chromosome III, the known location of the previously identified BNYVV resistance genes Rz1, Rz2 and Rz3. The availability to breeders of new resistance sources such as Rz4 increases the potential for breeding durable disease resistance.  相似文献   

6.
Beet necrotic yellow vein virus (BNYVV) is the most devastating pathogen of sugar beet worldwide. This virus has been reported in the majority of sugar beet growing regions of Iran as well. For the present study, we collected samples from different sugar beet varieties with suspected symptoms of BNYVV from the main important sugar beet growing regions in eight provinces of Iran. Infection of collected samples to BNYVV was tested by ELISA and RT-PCR. Upon testing of 167 collected samples of BNYVV suspected through ELISA and RT-PCR, 115 (68.9%) were infected. Different incidences of BNYVV through surveyed provinces may represent the presence of diverse infective viral sources or resistance genes in tested sugar beet varieties which need further attempts to develop control strategies. Results also showed that BNYVV has been recently distributed throughout some surveyed regions. Otherwise, trace infection or resistance to BNYVV infection in some varieties of distinct regions may represent proper sources of resistance to BNYVV.  相似文献   

7.
Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive‐stranded RNAs. Here, we have established a BNYVV full‐length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV‐based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co‐localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV‐based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV‐based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.  相似文献   

8.
9.
Beet necrotic yellow vein virus (BNYVV), vectored by Polymyxa betae, causes rhizomania in sugar beet. For disease control, the cultivation of hybrids carrying Rz1 resistance is crucial, but is compromised by resistance-breaking (RB) strains with specific mutations in the P25 protein at amino acids 67–70 (tetrad). To obtain evidence for P25 variability from soil-borne populations, where the virus persists for decades, populations with wild-type (WT) and RB properties were analysed by P25 deep sequencing. The level of P25 variation in the populations analysed did not correlate with RB properties. Remarkably, one WT population contained P25 with RB mutations at a frequency of 11%. To demonstrate selection by Rz1 and the influence of RB mutations on relative fitness, competition experiments between strains were performed. Following a mixture of strains with four RNAs, a shift in tetrad variants was observed, suggesting that strains did not mix or transreplicate. The plant genotype exerted a clear influence on the frequency of RB tetrads. In Rz1 plants, the RB variants outcompeted the WT variants, and mostly vice versa in susceptible plants, demonstrating a relative fitness penalty of RB mutations. The strong genotype effect supports the hypothesized Rz1 RB strain selection with four RNAs, suggesting that a certain tetrad needs to become dominant in a population to influence its properties. Tetrad selection was not observed when an RB strain, with an additional P26 protein encoded by a fifth RNA, competed with a WT strain, supporting its role as a second BNYVV pathogenicity factor and suggesting the reassortment of both types.  相似文献   

10.
Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet and has been found worldwide, probably as the result of recent worldwide spread. The BNYVV genome consists of four or five RNA components. Here, we report analysis of sequence variation in the RNA3-p25, RNA4-p31, RNA2-CP, and RNA5-p26 genes of 73 worldwide isolates. The RNA3-p25 gene encodes virulence and avirulence factors. These four sets of gene sequences each fell into two to four groups, of which the three groups of p25 formed eight subgroups with different geographical distributions. Each of these subgroup isolates (strains) could have arisen from four original BNYVV population and their mixed infections. The genetic diversity for BNYVV was relatively small. Selection pressure varied greatly depending on the BNYVV gene and geographical location. Isolates of the Italy strain, in which p25 was subject to the strongest positive selection, were able to overcome the Rz1-host resistance gene to differing degrees, whereas other geographically limited strains could not. Resistance-breaking variants were generated by p25 amino acid changes at positions 67 and 68. Our studies suggest that BNYVV originally evolved in East Asia and has recently become a pathogen of cultivated sugar beet followed by the emergence of new resistance-breaking variants.  相似文献   

11.
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate root-infecting parasite Polymyxa betae . BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1 , has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.  相似文献   

12.
Results of glasshouse experiments have confirmed that inbred lines of sugar beet differ in each of three types of resistance to Myzus persicae Sulz. and Aphis fabae Scop., namely: resistance to settling, resistance to multiplication, and tolerance. Resistance to multiplication was not invariably associated with resistance to settling, although plants of some lines showed both forms of resistance. Plants that were resistant to settling of alatae were not always resistant to apterae of the same species, and there was not a close relationship between resistance to M. persicae and to A. fabae. The mechanisms involved in resistance to aphids in sugar beet are not understood. Progenies of plants, selected for resistance to aphids from inbred lines, were often more resistant than progenies of unselected plants. Inheritance of each type of resistance is probably polygenic. The potential value of the different kinds of resistance, in reducing direct feeding damage and controlling the spread of virus yellows in the field, is discussed. The ultimate breeding objective is to produce commercial varieties in which appropriate kinds of resistance to aphids are combined with resistance to virus yellows. The use of such varieties would reduce the need to control aphids in the field by applications of chemicals.  相似文献   

13.
Reciprocal gene exchange between cultivated sugar beet and wild beets in seed production areas is probably the reason for the occurence of weed beets in sugar beet production fields. Therefore, when releasing transgenic sugar beet plants into the environment, gene transfer to wild beets ( Beta vulgaris ssp. maritima ) has to be considered. In this study the transfer of BNYVV- (beet necrotic yellow vein virus) resistance and herbicide-tolerance genes from two transgenic sugar beet lines that were released in field experiments in 1993 and 1994 in Germany to different wild beet accessions was investigated. In order to evaluate the consequences of outcrossing, manual pollinations of emasculated wild beet plants with homozygous transgenic sugar beet plants were performed. In the resulting hybrids the transgenes were stably inherited according to Mendelian law. Gene expression in leaves and roots of the hybrids was in the same range as in the original transgenic sugar beet plants. Moreover, it was found that in one of the wild beet accessions, transfer and expression of the BNYVV resistance gene did considerably increase the level of virus resistance.  相似文献   

14.
Activities of host ribonucleases and glucose-6-phosphate dehydrogenase were studied in three cultivars (Monosvalof, Steffi and Rimini) of sugar beet differing in their resistance to beet necrotic yellow vein virus (BNYVV). No differences were found in the susceptibility of cultivars to BNYVV between mechanically inoculated and Polymyxa betae (a natural fungal vector of the virus) infected plants, but the culmination of reproduction curves of BNYVV in mechanically inoculated plants was observed one week earlier than in plants inoculated by means of P. betae. The activities of ribonucleases corresponded with virus multiplication. In roots, activities of ribonucleases reached a maximum at day 7; in leaves, maximum activity was found at day 21 in cv. Monosvalof, and at day 14 in cv. Steffi. The relatively resistant cultivar Rimini showed much lower activities. The activity of glucose-6-phosphate dehydrogenase was only slightly increased at the time of culmination of the BNYVV reproduction curve in cvs. Monosvalof and Steffi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Polymyxa betae isolates were obtained by means of bait plants from a large number of soil samples collected in eastern Germany. Additional P. betae isolates were received from several institutions in western Germany and abroad. Isolates were grown on sugarbeet seedlings and tested for the presence of beet necrotic yellow vein virus (BNYVV) and beet soilborne virus (BSBV). BNYVV was only present in isolates from western Germany and abroad but absent in all isolates from eastern Germany., In contrast, BSBV was detected in more uniform geographic distribution in 14 out of 33 P. betae isolates tested. The virulence of P. betae isolates was estimated on the basis of the extent of resting spore formation in the root system of sugarbeet seedlings. Differences in virulence were found among virus-free as well as virus-carrying P. betae isolates. The mean value of virulence ratings was distinctly lower with BNYVV-carrying isolates and slightly lower with BSBV-carrying isolates as compared to virus-free isolates.  相似文献   

16.
17.
The most important rhizomania-resistance gene in sugar beet is the Rz1 gene from the Holly Sugar Company in California, the source widely used to breed partially resistant varieties. Other important gene sources are WB41 and WB42, which both originate from Beta vulgaris subsp. maritima collected in Denmark, and which have been reported to be similar. The major resistance gene in WB42 is known as Rz2. We studied the resistance in WB41 and used markers to map the major resistance gene in this source, which we call Rz3. It was identified on chromosome III. This is the chromosome that Rz1 and Rz2 have been mapped to. Data from greenhouse tests and ELISA showed that Rz3 had incomplete penetrance, with heterozygotes varying widely in resistance levels. The involvement of additional minor genes in the strong resistance of the original WB41 source cannot be excluded.  相似文献   

18.
19.
20.
The soil fungus Polymyxa betae, Keskin, besides being a root parasite, plays a role of a vector in dissemination of Beet necrotic yellow vein virus (BNYVV) causing rhizomania in sugar beet. An alternative to its chemical control is the application of antagonistic microorganisms suppressing proliferation of the fungal vector. In the present work, 66 Trichoderma isolates have been obtained from sugar beet plantations from diverse locations in Slovakia. The ability of the selected isolates to grow at low temperature (10 °C) and to suppress the colonization of roots with P. betae and the multiplication of BNYVV in roots under glasshouse conditions were tested. The roots of sugar beet seedlings growing in the BNYVV-infested soil were analyzed by serological ELISA test using monoclonal and polyclonal antibodies for the presence of BNYVV and checked microscopically for the occurrence of cystosori of P. betae. The efficacy of the selected strains to suppress the proliferation of BNYVV varied on the average between 21 and 68%. On the basis of these tests, candidate strains for practical application in biocontrol of sugar beet rhizomania were selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号