首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
红豆草根瘤侵染细胞核在细胞凋亡中的超微结构变化   总被引:1,自引:0,他引:1  
用透射电镜观察红豆草根瘤侵染细胞核在细胞凋亡过程中的超微结构,以探讨红豆草根瘤侵染细胞核在发育过程中的超微结构变化及其与细胞凋亡的关系.结果表明,红豆草根瘤侵染细胞核的超微结构随细胞发育程度不同而不同.在幼龄侵染细胞中,细胞核体积较大,近似圆形.在即将成熟和成熟的侵染细胞中,细胞核膜有内陷现象,其核仁常具有核仁泡和核仁联合体.在早期凋亡的侵染细胞中,细胞核体积减小,形状变得不规则,核膜出现大量内陷,在其表面形成许多大的突起和深的沟槽,有时还有内质网、线粒体、小液泡和细菌等位于核膜的内陷处,而且核仁也开始裂解.在后期凋亡的侵染细胞中,除细菌解体外,还出现核仁消失,核膜破裂,核质外流,并在细胞质中形成一些电子密度很高,无一定形状的团块状物质.  相似文献   

2.
The successful invasion of Plasmodium is an essential step in their life cycle. The parasite reticulocyte‐binding protein homologues (RHs) and erythrocyte‐binding like proteins are two families involved in the invasion leading to merozoite‐red blood cell (RBC) junction formation. Ca2+ signaling has been shown to play a critical role in the invasion. RHs have been linked to Ca2+ signaling, which triggers the erythrocyte‐binding like proteins release ahead of junction formation, consistent with RHs performing an initial sensing function in identifying suitable RBCs. RH5, the only essential RHs, is a highly promising vaccine candidate. RH5‐basigin interaction is essential for merozoite invasion and also important in determining host tropism. Here, we show that RH5 has a distinct function from the other RHs. We show that RH5‐Basigin interaction on its own triggers a Ca2+ signal in the RBC resulting in changes in RBC cytoskeletal proteins phosphorylation and overall alterations in RBC cytoskeleton architecture. Antibodies targeting RH5 that block the signal prevent invasion before junction formation consistent with the Ca2+ signal in the RBC leading to rearrangement of the cytoskeleton required for invasion. This work provides the first time a functional context for the essential role of RH5 and will now open up new avenues to target merozoite invasion.  相似文献   

3.
Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we compared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluorescently labeled nuclei and live-cell imaging, we show that F. oxysporum is subject to a developmental transition from a uninucleate to a multinucleate state after completion of colony initiation. We observed a special type of hypha that exhibits a higher growth rate, possibly acting as a nutrient scout. The higher growth rate is associated with a higher nuclear count and mitotic waves involving 2 to 6 nuclei in the apical compartment. Further, we found that dormant nuclei of intercalary compartments can reenter the mitotic cycle, resulting in multinucleate compartments with up to 18 nuclei in a single compartment.  相似文献   

4.
The Medaka is an excellent genetic system for studies of vertebrate development and disease and environmental and evolutionary biology studies. To facilitate the mapping of markers or the cloning of affected genes in Medaka mutants identified by forward-genetic screens, we have established a panel of whole-genome radiation hybrids (RHs) and RH maps for three Medaka chromosomes. RH mapping is useful, since markers to be mapped need not be polymorphic and one can establish the order of markers that are difficult to resolve by genetic mapping owing to low genetic recombination rates. RHs were generated by fusing the irradiated donor, OLF-136 Medaka cell line, with the host B78 mouse melanoma cells. Of 290 initial RH clones, we selected 93 on the basis of high retention of fragments of the Medaka genome to establish a panel that allows genotyping in the 96-well format. RH maps for linkage groups 12, 17, and 22 were generated using 159 markers. The average retention for the three chromosomes was 19% and the average break point frequency was approximately 33 kb/cR. We estimate the potential resolution of the RH panel to be approximately 186 kb, which is high enough for integrating RH data with bacterial artificial chromosome clones. Thus, this first RH panel will be a useful tool for mapping mutated genes in Medaka.  相似文献   

5.
A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle-dependent linkage of cell-autonomous and non-autonomous mechanisms. During S to G2 progression, the microtubule-associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2-phase by altering microtubule organization. Thus, Tpx2 links cell-cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S-phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1-phase nuclei depends on a displacement effect by G2-phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.  相似文献   

6.
This study aimed to analyze male gamete behavior from mature pollen to pollen tube growth in the bicellular pollen species Alstroemeria aurea. For mature pollen, pollen protoplasts were examined using flow cytometry. The protoplasts showed two peaks of DNA content at 1C and 1.90C. Flow cytometry at different developmental stages of pollen tubes cultured in vitro revealed changes in the nuclear phase at 9 and 18 h after culture. Sperm cell formation occurred at 6–9 h after culture, indicating that the first change was due to the division of the generative cells into sperm cells. After sperm cell formation, the number of vegetative nucleus associations with sperm cells showed a tendency to increase. This association was suggested as the male germ unit (MGU). When sperm cells, vegetative nuclei, and partial MGUs were collected separately from pollen tubes cultured for 18 h and analyzed using a flow cytometer, the sperm cells and vegetative nuclei contained 1C DNA, while the DNA content of partial MGUs was counted as 2C. Therefore, the second change in the nuclear phase, which results in an increase in 2C nuclei, is possibly related to the formation of MGUs.  相似文献   

7.
Early Arabidopsis thaliana seedling growth includes the highly synchronous development of hairs from every epidermal cell of the collet (the root-hypocotyl transition zone). The dynamics of collet hair growth, and accompanying nuclear movement and endoreduplication, were followed using a combination of different fluorescent probes for time-lapse imaging and flow cytometry. Using laser-scanning confocal microscopy on the double-transgenic Arabidopsis hybrid line NLS-GFP-GUS × YPM, there appeared to be a correlation between nuclear position and the cell tip during growth of the collet hair cells, as occurs in asynchronously developing root hairs. However, disruption of nuclear movement in the growing collet hairs using low concentrations of cytoskeletal inhibitors demonstrated that nuclear positioning close to the tip of the cell is not essential for tip-directed growth of the hair. Nuclear DNA content increases from 4C to 16C during development of the collet hairs. Following cessation of growth, nuclei moved to the base of the hairs and then their movement became asynchronous and limited. Co-visualization of RFP-highlighted prevacuolar vesicles and GFP-labelled nuclei showed that, whereas small vesicles allowed unimpeded nuclear movement within the hair, transient stops and directional reversals coincided with the presence of larger vesicles in close proximity to the nucleus. Arabidopsis collet hairs provide a robust, easily accessible, naturally synchronized population of single tip-growing cells that can be used as a model cell type for studying nuclear movement and endoreduplication.  相似文献   

8.
Controlling the initiation of cell migration plays a fundamental role in shaping the tissue during embryonic development. During gastrulation in zebrafish, some mesendoderm cells migrate inward to form the endoderm as the innermost germ layer along the yolk syncytial layer. However, how the initiation of inward migration is regulated is poorly understood. In this study, we performed light-sheet microscopy-based 3D single-cell tracking consisting of (a) whole-embryo time-lapse imaging with light-sheet microscopy and (b) three-dimensional single cell tracking in the zebrafish gastrula in which cells are marked with histone H2A-mCherry (nuclei) and the sox17:EGFP transgene (expressed in endoderm cells). We analyzed the correlation between the timing of cell internalization and cell division. Most cells that differentiated into endoderm cells began to internalize during the first half of the cell cycle, where the length of a cell cycle was defined by the period between two successive cell divisions. By contrast, the timing of other internalized cells was not correlated with a certain phase of the cell cycle. These results suggest the possibility that cell differentiation is associated with the relationship between cell cycle progression and the start of internalization. Moreover, the 3D single-cell tracking approach is useful for further investigating how cell migration is integrated with cell proliferation to shape tissues in zebrafish embryos.  相似文献   

9.
In multicellular systems, the control of cell size is fundamental in regulating the development and growth of the different organs and of the whole organism. In most systems, major changes in cell size can be observed during differentiation processes where cells change their volume to adapt their shape to their final function. How relevant changes in cell volume are in driving the differentiation program is a long‐standing fundamental question in developmental biology. In the Arabidopsis root meristem, characteristic changes in the size of the distal meristematic cells identify cells that initiated the differentiation program. Here, we show that changes in cell size are essential for the initial steps of cell differentiation and that these changes depend on the concomitant activation by the plant hormone cytokinin of the EXPAs proteins and the AHA1 and AHA2 proton pumps. These findings identify a growth module that builds on a synergy between cytokinin‐dependent pH modification and wall remodeling to drive differentiation through the mechanical control of cell walls.  相似文献   

10.
Abstract The effects of relative humidity (RH) on cocoon formation and survival in the braconid parasitoid wasp Cotesia glomerata (L.) (Hymenoptera: Braconidae) are investigated under various humidity conditions (50, 75, 90, 95 and 100% RH) at 20 °C and under an LD 16 : 8 h photoperiod. The mortality rate at the time of egression from hosts under 100% RH is significantly higher than for other RHs. Cocoon clusters formed at 100% RH spread significantly more than those formed at 50, 75, or 90% RH. Developmental periods differ significantly among RHs under which wasps developed. The mean period from the egression from hosts to adult emergence is 8.7 days when developed at 50–95% RHs, and 8.0 days at 100% RH. The emergence rates of C. glomerata that are maintained under the same humidity conditions after egression from hosts are not significantly different among RHs. However, emergence rates from cocoons that are transferred from 100% RH to 50 and 75% RH are < 70%, although the rates are > 90% in most cases. Some wasps do not emerge from cocoons: more than 60% die after adult eclosion at all RHs; the relative frequency of adult deaths is approximately 90% at 50% RH. Relative humidity influences the cluster and cocoon status strongly: both good clusters and cocoons are formed at low RHs. Emergence rates from cocoons of different ranks are significantly different: the rates of low‐rank cocoons are low at low RHs. The survival of C. glomerata is affected strongly by RH through cocoon formation.  相似文献   

11.
Nuclear migration is indispensable for normal growth, differentiation, and development, and has been studied in several fungi including Aspergillus nidulans and Neurospora crassa. To better characterize nuclear movement and its consequences during conidiophore development, conidiation, and conidial germination, we performed confocal microscopy and time-lapse imaging on A. nidulans and Aspergillus oryzae strains expressing the histone H2B-EGFP fusion protein. Active trafficking of nuclei from a vesicle to a phialide and subsequently into a conidium provided the mechanistic basis for the formation of multinucleate conidia in A. oryzae. In particular, the first direct visual evidence on multinucleate conidium formation by the migration of nuclei from a phialide into the conidium, rather than by mitotic division in a newly formed conidium, was obtained. Interestingly, a statistical analysis on conidial germination revealed that conidia with more nuclei germinated earlier than those with fewer nuclei. Moreover, multinucleation of conidia conferred greater viability and resistance to UV-irradiation and freeze-thaw treatment.  相似文献   

12.
13.
小麦根尖细胞分化过程中超微结构变化的研究   总被引:7,自引:0,他引:7  
本文研究了小麦根尖分生区、伸长区和成熟区中细胞的超微结构变化。发现细胞核从分生区到成熟区,其大小、形态及其内核仁和异染色质结构均发生一些有规律的变化;内质网、液泡、线粒体、质体、细胞壁和胞间隙也存在着一系列有规律的变化;并讨论了这些动态变化与根尖细胞分化的内在联系。  相似文献   

14.
The cellular mechanisms that drive growth and remodeling of the early intestinal epithelium are poorly understood. Current dogma suggests that the murine fetal intestinal epithelium is stratified, that villi are formed by an epithelial remodeling process involving the de novo formation of apical surface at secondary lumina, and that radial intercalation of the stratified cells constitutes a major intestinal lengthening mechanism. Here, we investigate cell polarity, cell cycle dynamics and cell shape in the fetal murine intestine between E12.5 and E14.5. We show that, contrary to previous assumptions, this epithelium is pseudostratified. Furthermore, epithelial nuclei exhibit interkinetic nuclear migration, a process wherein nuclei move in concert with the cell cycle, from the basal side (where DNA is synthesized) to the apical surface (where mitosis takes place); such nuclear movements were previously misinterpreted as the radial intercalation of cells. We further demonstrate that growth of epithelial girth between E12.5 and E14.5 is driven by microtubule- and actinomyosin-dependent apicobasal elongation, rather than by progressive epithelial stratification as was previously thought. Finally, we show that the actin-binding protein Shroom3 is crucial for the maintenance of the single-layered pseudostratified epithelium. In mice lacking Shroom3, the epithelium is disorganized and temporarily stratified during villus emergence. These results favor an alternative model of intestinal morphogenesis in which the epithelium remains single layered and apicobasally polarized throughout early intestinal development.  相似文献   

15.
Neurons decline in their functionality over time, and age-related neuronal alterations are associated with phenotypes of neurodegenerative diseases. In nonneural tissues, an infolded nuclear shape has been proposed as a hallmark of aged cells and neurons with infolded nuclei have also been reported to be associated with neuronal activity. Here, we performed time-lapse imaging in the visual cortex of Nex-Cre;SUN1-GFP mice. Nuclear infolding was observed within 10 min of stimulation in young nuclei, while the aged nuclei were already infolded pre-stimulation and showed reduced dynamics of the morphology. In young nuclei, the depletion of the stimuli restored the nucleus to a spherical shape and reduced the dynamic behavior, suggesting that nuclear infolding is a reversible process. We also found the aged nucleus to be stiffer than the young one, further relating to the age-associated loss of nuclear shape dynamics. We reveal temporal changes in the nuclear shape upon external stimulation and observe that these morphological dynamics decrease with age.  相似文献   

16.
Nearly a century ago, Rosenvinge published a now-classic paper reporting nuclear transfer between cells of Polysiphonia during secondary pit connection (SPC) formation. While reinvestigating this phenomenon, we discovered that the uninucleate apical cell, which is the progenitor of all cells in the plant, has many times (ca. 64–128 ×) the level of nuclear DNA characteristic of nuclei of gametes or mature pericentral cells. Via a regular sequence of cell divisions, the polyploid apical cell gives rise to tiers of cells, each composed of a number of pericentral cells which surround a single central cell. A large proportion of the nuclear divisions are not accompanied by DNA replication. Thus, as the number of nuclei within elongating pericentral cells increases, the DNA level of nuclei in these cells “cascades” down to the DNA level expected for the particular life history generation (i.e., gametophyte or tetrasporophyte). In mature pericentral cells, the number of nuclei is proportional to the volume of the cell. The pattern of nuclear division, reduction in ploidy level and the timing of intercellular nuclear transfer via SPC formation is regular and characteristic of a species. Nuclei transferred from one cell to an adjacent cell participate in the further nuclear divisions of the recipient cell. The degree of polyploidy in apical cells may determine the number of cells in a “determinant” branch or even the number of cells in “indeterminant” axes. In addition, the highly polyploid state of the germinating spore and its pattern of development may provide for the rapid initial growth so characteristic of this taxon.  相似文献   

17.
We present a multiview selective-plane illumination microscope (MuVi-SPIM), comprising two detection and illumination objective lenses, that allows rapid in toto fluorescence imaging of biological specimens with subcellular resolution. The fixed geometrical arrangement of the imaging branches enables multiview data fusion in real time. The high speed of MuVi-SPIM allows faithful tracking of nuclei and cell shape changes, which we demonstrate through in toto imaging of the embryonic development of Drosophila melanogaster.  相似文献   

18.
19.
Kinesin-1 and dynein are recruited to the nuclear envelope by the Caenorhabditis elegans klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 to move nuclei. The mechanisms of how these motors are coordinated to mediate nuclear migration are unknown. Time-lapse differential interference contrast and fluorescence imaging of embryonic hypodermal nuclear migration events were used to characterize the kinetics of nuclear migration and determine microtubule dynamics and polarity. Wild-type nuclei display bidirectional movements during migration and are also able to roll past cytoplasmic granules. unc-83, unc-84, and kinesin-1 mutants have severe nuclear migration defects. Without dynein, nuclear migration initiates normally but lacks bidirectional movement and shows defects in nuclear rolling, implicating dynein in resolution of cytoplasmic roadblocks. Microtubules are highly dynamic during nuclear migration. EB1::green fluorescence protein imaging demonstrates that microtubules are polarized in the direction of nuclear migration. This organization of microtubules fits with our model that kinesin-1 moves nuclei forward and dynein functions to move nuclei backward for short stretches to bypass cellular roadblocks.  相似文献   

20.
The major human blood granulocyte, the neutrophil, is an essential component of the innate immunity system, emigrating from blood vessels and migrating through tight tissue spaces to the site of bacterial or fungal infection where they kill and phagocytose invading microbes. Since the late nineteenth century, it has been recognized that the human neutrophil nucleus is distinctly not ovoid as in other cell types, but possesses a lobulated (segmented) shape. This deformable nucleus enhances rapid migration. Recent studies have demonstrated that lamin B receptor (LBR) is necessary for the non-ovoid shape. LBR is an integral membrane protein of the nuclear envelope. A single dominant mutation in humans leads to neutrophils with hypolobulated nuclei (Pelger–Huet anomaly); homozygosity leads to ovoid granulocyte nuclei. Interestingly, LBR is also an enzyme involved in cholesterol metabolism. Homozygosity for null mutations is frequently lethal and associated with severe skeletal deformities. In addition to the necessity for LBR, formation of the mature granulocyte nucleus also depends upon lamin composition and microtubule integrity. These observations are part of a larger question on the relationships between nuclear shape and cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号