共查询到20条相似文献,搜索用时 11 毫秒
1.
Shawn Larson Daniel Monson † Brenda Ballachey † Ron Jameson ‡ Samuel K. Wasser § 《Marine Mammal Science》2009,25(2):351-372
Sea otters ( Enhydra lutris ) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level ( r 2 = 0.27, P < 0.001) and individual-level ( r 2 = 0.54, P < 0.001) corticosterone values, as well as a negative correlation between genetic diversity and cortisol at the individual level ( r 2 = 0.17, P = 0.04). No relationship was found between genetic diversity and testosterone ( P = 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity. 相似文献
2.
Sea otter (Enhydra lutris) populations experienced widespread reduction and extirpation due to the fur trade of the 18th and 19th centuries. We examined genetic variation within four microsatellite markers and the mitochondrial DNA (mtDNA) d-loop in one prefur trade population and compared it to five modern populations to determine potential losses in genetic variation. While mtDNA sequence variability was low within both modern and extinct populations, analysis of microsatellite allelic data revealed that the prefur trade population had significantly more variation than all the extant sea otter populations. Reduced genetic variation may lead to inbreeding depression and we believe sea otter populations should be closely monitored for potential associated negative effects. 相似文献
3.
The sea otter (Enhydra lutris) is a threatened species. It is also a popular exhibit animal in many zoos and aquariums worldwide. Unfortunately, sea otters reproduce successfully in only a small number of facilities. Pregnancies vary in duration, and are thought to involve a delayed implantation of about 2–3 months, followed by an implanted phase of 4–5 months. In this study we attempted to identify estrus and pregnancy states, and predict the date of birth in one female sea otter (Mali) housed at the Lisbon Oceanarium. We used different techniques to evaluate her reproductive status, including monitoring behavior to determine estrus, assessing weight changes to determine pregnancy and parturition date, and analyzing fecal hormone samples to determine estrus, pregnancy, and parturition date. During this study, Mali became pregnant four times. Her gestational length varied between 188–255 days. Weight increases >29 kg or 15% above baseline weight suggested pregnancy, and parturition was estimated to occur approximately 3 months thereafter. Fecal hormone (progestagens and estrogen) metabolite data gathered during two of her pregnancies showed that Mali's delayed implantation phase of pregnancy lasted 43–109 days (a typical duration in other sea otters is 100–110 days). Mali's implanted phase lasted a relatively long time (140–145 days compared to an average of 117 days in other sea otters). The combination of the three measurements was a powerful tool that enabled us to determine pregnancy and anticipate the arrival of a new sea otter pup. Zoo Biol 24:73–81, 2005. © 2005 Wiley‐Liss, Inc. 相似文献
4.
Hannah P. Wellman 《Marine Mammal Science》2018,34(3):806-822
The sea otter (Enhydra lutris) was nearly driven to extinction on the Pacific Coast in the 19th century due to intensive commercial hunting and the maritime fur trade. Despite successful reintroduction efforts elsewhere in North America, the Oregon sea otter population remains locally extirpated and listed as endangered. Prior study addressed precontact sea otter teeth from Oregon and found they were not significantly different in absolute size from modern California sea otter (Enhydra lutris nereis) teeth, and smaller than modern Alaska sea otter (Enhydra lutris lutris) teeth. These geographic groupings were later confirmed by an ancient DNA study. The conclusion that distinct geographic populations exist based on tooth size was founded on small samples. Larger samples of teeth, as well as new data on humeri and femora, indicate dimensions vary significantly along a latitudinal cline from California to Alaska. Morphometric analyses of ancient animal remains can be used to examine spatial relationships of phenotypic features and inform conservation biology decisions. 相似文献
5.
The amount and distribution of population genetic variation is crucial information for the design of effective conservation strategies for endangered species and can also be used to provide inference about demographic processes and patterns of migration. Here, we describe variation at a large number of nuclear genes in sea otters Enhydra lutris ssp. We surveyed 14 variable microsatellite loci and two genes of the major histocompatibility complex (MHC) in up to 350 California sea otters Enhydra lutris nereis , which represents ∼10% of the subspecies' population, and 46 otters from two Alaskan sites. We utilized methods for detecting past reductions in effective population size to examine the effects of near extinction from the fur trade. Summary statistic tests largely failed to find a signal of a recent population size reduction (within the past 200 years), but a Bayesian method found a signal of a strong reduction over a longer time scale (up to 500 years ago). These results indicate that the reduction in size began long enough ago that much genetic variation was lost before the 19th century fur trade. A comparison of geographic distance and pairwise relatedness for individual otters found no evidence of kin-based spatial clustering for either gender. This indicates that there is no population structure, due to extended family groups, within the California population. A survey of population genetic variation found that two of the MHC genes, DQB and DRB, had two alleles present and one of the genes, DRA, was monomorphic in otters. This contrasts with other mammals, where they are often the most variable coding genes known. Genetic variation in the sea otter is among the lowest observed for a mammal and raises concerns about the long-term viability of the species, particularly in the face of future environmental changes. 相似文献
6.
7.
Posidonia oceanica is an endemic seagrass species in the Mediterranean Sea. In order to assess levels of genetic structure in this species, the microsatellite polymorphism was analysed from meadows collected in several localities, along the coasts of the Tyrrhenian Sea (Mediterranean Sea). The existence of single population units and the recruitment of seedlings collected in some localities were investigated. Moreover, genetic structure at different spatial scales and biogeographic relationships among populations were also assessed. Our analysis showed the existence of clear patterns of genetic structure in P. oceanica in the area considered in the analysis. P. oceanica, in fact, is present in separate meadows that represent discrete populations, characterized by low genetic diversity. Comparable levels of genetic variability between mature meadows and seedlings were found. Patterns of genetic relatedness among populations seem to be in accord with direction of dominant current flux in the whole area, separating South Tyrrhenian from North Tyrrhenian populations. Moderate levels of gene flow between populations and genetic substructure within populations, together with the finding of the limited role of sexual reproduction in increasing genetic variability, should be a cause for concern for the persistence of this essential resource in the Mediterranean basin. 相似文献
8.
9.
All existing sea otter, Enhydra lutris, populations have suffered at least one historic population bottleneck stemming from the fur trade extirpations of the eighteenth and nineteenth centuries. We examined genetic variation, gene flow, and population structure at five microsatellite loci in samples from five pre-fur trade populations throughout the sea otter's historical range: California, Oregon, Washington, Alaska, and Russia. We then compared those values to genetic diversity and population structure found within five modern sea otter populations throughout their current range: California, Prince William Sound, Amchitka Island, Southeast Alaska and Washington. We found twice the genetic diversity in the pre-fur trade populations when compared to modern sea otters, a level of diversity that was similar to levels that are found in other mammal populations that have not experienced population bottlenecks. Even with the significant loss in genetic diversity modern sea otters have retained historical structure. There was greater gene flow before extirpation than that found among modern sea otter populations but the difference was not statistically significant. The most dramatic effect of pre fur trade population extirpation was the loss of genetic diversity. For long term conservation of these populations increasing gene flow and the maintenance of remnant genetic diversity should be encouraged. 相似文献
10.
Lactation and resource limitation affect stress responses,thyroid hormones,immune function,and antioxidant capacity of sea otters (Enhydra lutris) 下载免费PDF全文
Sarah M. Chinn Daniel H. Monson M. Tim Tinker Michelle M. Staedler Daniel E. Crocker 《Ecology and evolution》2018,8(16):8433-8447
Lactation is the most energetically demanding stage of reproduction in female mammals. Increased energetic allocation toward current reproduction may result in fitness costs, although the mechanisms underlying these trade‐offs are not well understood. Trade‐offs during lactation may include reduced energetic allocation to cellular maintenance, immune response, and survival and may be influenced by resource limitation. As the smallest marine mammal, sea otters (Enhydra lutris) have the highest mass‐specific metabolic rate necessitating substantial energetic requirements for survival. To provide the increased energy needed for lactation, female sea otters significantly increase foraging effort, especially during late‐lactation. Caloric insufficiency during lactation is reflected in the high numbers of maternal deaths due to End‐Lactation Syndrome in the California subpopulation. We investigated the effects of lactation and resource limitation on maternal stress responses, metabolic regulation, immune function, and antioxidant capacity in two subspecies of wild sea otters (northern: E. l. nereis and southern: E. l. kenyoni) within the California, Washington, and Alaska subpopulations. Lactation and resource limitation were associated with reduced glucocorticoid responses to acute capture stress. Corticosterone release was lower in lactating otters. Cortisol release was lower under resource limitation and suppression during lactation was only evident under resource limitation. Lactation and resource limitation were associated with alterations in thyroid hormones. Immune responses and total antioxidant capacity were not reduced by lactation or resource limitation. Southern sea otters exhibited higher concentrations of antioxidants, immunoglobulins, and thyroid hormones than northern sea otters. These data provide evidence for allocation trade‐offs during reproduction and in response to nutrient limitation but suggest self‐maintenance of immune function and antioxidant defenses despite energetic constraints. Income‐breeding strategists may be especially vulnerable to the consequences of stress and modulation of thyroid function when food resources are insufficient to support successful reproduction and may come at a cost to survival, and thereby influence population trends. 相似文献
11.
Global diversity and genetic contributions of chicken populations from African,Asian and European regions 总被引:1,自引:0,他引:1
C. M. Lyimo A. Weigend P. L. Msoffe H. Eding H. Simianer S. Weigend 《Animal genetics》2014,45(6):836-848
Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour‐Net genetic clustering and structure analysis revealed two main groups of Asian and north‐west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north‐west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds. 相似文献
12.
《Animal : an international journal of animal bioscience》2015,9(2):218-226
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation. 相似文献
13.
An unusual genotype of Toxoplasma gondii is common in California sea otters (Enhydra lutris nereis) and is a cause of mortality 总被引:2,自引:0,他引:2
Miller MA Grigg ME Kreuder C James ER Melli AC Crosbie PR Jessup DA Boothroyd JC Brownstein D Conrad PA 《International journal for parasitology》2004,34(3):275-284
Toxoplasma gondii-associated meningoencephalitis is a significant disease of California sea otters (Enhydra lutris nereis), responsible for 16% of total mortality in fresh, beachcast carcasses. Toxoplasma gondii isolates were obtained from 35 California otters necropsied between 1998 and 2002. Based on multi-locus PCR-restriction fragment length polymorphism and DNA sequencing at conserved genes (18S rDNA, ITS-1) and polymorphic genes (B1, SAG1, SAG3 and GRA6), two distinct genotypes were identified: type II and a novel genotype, here called type x, that possessed distinct alleles at three of the four polymorphic loci sequenced. The majority (60%) of sea otter T. gondii infections were of genotype x, with the remaining 40% being of genotype II. No type I or III genotypes were identified. Epidemiological methods were used to examine the relationship between isolated T. gondii genotype(s) and spatial and demographic risk factors, such as otter stranding location and sex, as well as specific outcomes related to pathogenicity, such as severity of brain inflammation on histopathology and T. gondii-associated mortality. Differences were identified with respect to T. gondii genotype and sea otter sex and stranding location along the California coast. Localised spatial clustering was detected for both type II (centred within Monterey Bay) and x (centred near Morro Bay)-infected otters. The Morro Bay cluster of type x-infected otters overlaps previously reported high-risk areas for sea otter infection and mortality due to T. gondii. Nine of the 12 otters that had T. gondii-associated meningoencephalitis as a primary cause of death were infected with type x parasites. 相似文献
14.
《Animal : an international journal of animal bioscience》2014,8(2):200-207
Nuclear genetic diversity and differentiation of 341 sheep belonging to 12 sheep breeds from Croatia and Bosnia and Herzegovina were examined. The aim of the study was to provide the understanding of the genetic structure and variability of the analysed pramenka sheep populations, and to give indications for conservation strategies based on the population diversity and structure information. The genetic variation of the sheep populations, examined at the nuclear level using 27 microsatellite loci, revealed considerable levels of genetic diversity, similar to the diversity found in other European indigenous low-production sheep breeds. Population-specific alleles were detected at most loci and in breeds analysed. The observed heterozygosity ranged from 0.643 (in Lika pramenka) to 0.743 (in Vlasic pramenka), and the expected heterozygosity ranged from 0.646 (in Lika pramenka) to 0.756 (in Dalmatian pramenka). Significant inbreeding coefficients were found for half of the populations studied and ranged from 0.040 (Pag island sheep) to 0.091 (Kupres pramenka). Moderate genetic differentiation was found between the studied sheep populations. The total genetic variability observed between different populations was 5.29%, whereas 94.71% of the variation was found within populations. Cres island sheep, Lika pramenka and Istrian sheep were identified as the most distinct populations, which was confirmed by the factorial analysis of correspondence and supported through a bootstrapping adjustment to correct for the difference in the sample sizes. The population structure analysis distinguished 12 clusters for the 12 sheep breeds analysed. However, the cluster differentiation was low for Dalmatian, Vlasic, Stolac and Krk pramenka. This systematic study identified Lika pramenka and Rab island sheep as those with the lowest diversity, whereas Istrian sheep and Pag island sheep had the highest. Conservation actions are proposed for Istrian, Rab and Cres island sheep, Lika and Kupres pramenka because of high estimated coefficients of inbreeding. 相似文献
15.
Jessica R. Hale Kristin L. Laidre Steven J. Jeffries Jonathan J. Scordino Deanna Lynch Ronald J. Jameson M. Tim Tinker 《The Journal of wildlife management》2022,86(4):e22215
Sea otters (Enhydra lutris kenyoni) historically occurred in Washington State, USA, until their local extinction in the early 1900s as a result of the maritime fur trade. Following their extirpation, 59 sea otters were translocated from Amchitka Island, Alaska, USA, to the coast of Washington, with 29 released at Point Grenville in 1969 and 30 released at La Push in 1970. The Washington Department of Fish and Wildlife has outlined 2 main objectives for sea otter recovery: a target population level and a target geographic distribution. Recovery criteria are based on estimates of population abundance, equilibrium abundance (K), and geographic distribution; therefore, estimates of these parameters have important management implications. We compiled available survey data for sea otters in Washington State since their translocation (1977–2019) and fit a Bayesian state-space model to estimate past and current abundance, and equilibrium abundance at multiple spatial scales. We then used forward projections of population dynamics to explore potential scenarios of range recolonization and as the basis of a sensitivity analysis to evaluate the relative influence of movement behavior, frontal wave speed, intrinsic growth, and equilibrium density on future population recovery potential. Our model improves upon previous analyses of sea otter population dynamics in Washington by partitioning and quantifying sources of estimation error to estimate population dynamics, by providing robust estimates of K, and by simulating long-term population growth and range expansion under a range of realistic parameter values. Our model resulted in predictions of population abundance that closely matched observed counts. At the range-wide scale, the population size in our model increased from an average of 21 independent sea otters (95% CI = 13–29) in 1977 to 2,336 independent sea otters (95% CI = 1,467–3,359) in 2019. The average estimated annual growth rate was 12.42% and varied at a sub-regional scale from 6.42–14.92%. The overall estimated mean K density of sea otters in Washington was 1.71 ± 0.90 (SD) independent sea otters/km2 of habitat (1.96 ± 1.04 sea otters/km2, including pups), and estimated densities within the current range correspond on average to 87% of mean sub-regional equilibrium values (range = 66–111%). The projected value of K for all of Washington was 5,287 independent sea otters (95% CI = 2,488–8,086) and 6,080 sea otters including pups (95% CI = 2,861–9,300), assuming a similar range of equilibrium densities in currently un-occupied habitats. Sensitivity analysis of simulations of sea otter population growth and range expansion suggested that mean K density estimates in currently occupied sub-regions had the largest impact on predicted future population growth (r2 = 0.52), followed by the rate of southward range expansion (r2 = 0.26) and the mean K density estimate of currently unoccupied sub-regions to the south of the current range (r2 = 0.04). Our estimates of abundance and sensitivity analysis of simulations of future population abundance and geographic range help determine population status in relation to population recovery targets and identify the most influential parameters affecting future population growth and range expansion for sea otters in Washington State. 相似文献
16.
Osman Mahgoub Hamza A. Babiker I.T. Kadim Mohammed Al‐Kindi Salwa Hassan W. Al‐Marzooqi Yasmin E. Eltahir M. A. Al‐Abri Aisha Al‐Khayat Kareema R. Al‐Sinani Homoud Hilal Al‐Khanjari Vânia Costa Shanyuan Chen Albano Beja‐Pereira 《Animal genetics》2013,44(3):336-339
Among all livestock species, cattle have a prominent status as they have contributed greatly to the economy, nutrition and culture from the beginning of farming societies until the present time. The origins and diversity of local cattle breeds have been widely assessed. However, there are still some regions for which very little of their local genetic resources is known. The present work aimed to estimate the genetic diversity and the origins of Omani cattle. Located in the south‐eastern corner of the Arabian Peninsula, close to the Near East, East Africa and the Indian subcontinent, the Sultanate of Oman occupies a key position, which may enable understanding cattle dispersal around the Indian Ocean. To disclose the origin of this cattle population, we used a set of 11 polymorphic microsatellites and 113 samples representing the European, African and Indian ancestry to compare with cattle from Oman. This study found a very heterogenic population with a markedly Bos indicus ancestry and with some degree of admixture with Bos taurus of African and Near East origin. 相似文献
17.
N. T. K. Cuc H. Simianer H. Eding H. V. Tieu V. C. Cuong C. B. A. Wollny L. F. Groeneveld S. Weigend 《Animal genetics》2010,41(5):545-547
This study aimed to assess genetic diversity within and between nine Vietnamese local chicken breeds and two Chinese breeds included for comparison. Genotyping 29 microsatellites revealed high diversity of both Vietnamese and Chinese breeds. Cluster analysis using the structure software suggested six clusters as the most likely grouping of the 11 breeds studied. These groups encompassed four homogeneous clusters, one formed by the two Chinese breeds and the other three representing a single breed each: the Mekong Delta breed Ac, the South Central Coast breed Choi, and the Red River Delta breed Dong Tao. The six remaining breeds formed two additional admixed clusters. 相似文献
18.
19.
Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses 下载免费PDF全文
Yuchen Yang Wenqing Wang Cairong Zhong Anthony J. Greenberg Chung‐I Wu Norman C. Duke Suhua Shi 《Global Change Biology》2018,24(4):1741-1748
The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance. To assess the impact of historical sea level changes, we conducted an extensive genetic diversity survey on the Indo‐Malayan coast, a hotspot with a large global mangrove distribution. A survey of 26 populations in six species reveals extremely low genome‐wide nucleotide diversity and hence very small effective population sizes (Ne) in all populations. Whole‐genome sequencing of three mangrove species further shows the decline in Ne to be strongly associated with the speed of past changes in sea level. We also used a recent series of flooding events in Yalong Bay, southern China, to test the robustness of mangroves to sea level changes in relation to their genetic diversity. The events resulted in the death of half of the mangrove trees in this area. Significantly, less genetically diverse mangrove species suffered much greater destruction. The dieback was accompanied by a drastic reduction in local invertebrate biodiversity. We thus predict that tropical coastal communities will be seriously endangered as the global sea level rises. Well‐planned coastal development near mangrove forests will be essential to avert this crisis. 相似文献
20.
Temporal genetic patterns of diversity and structure evidence chaotic genetic patchiness in a spiny lobster 下载免费PDF全文
Cecilia Villacorta‐Rath Carla A. Souza Nicholas P. Murphy Bridget S. Green Caleb Gardner Jan M. Strugnell 《Molecular ecology》2018,27(1):54-65
Population structure of many marine organisms is spatially patchy and varies within and between years, a phenomenon defined as chaotic genetic patchiness. This results from the combination of planktonic larval dispersal and environmental stochasticity. Additionally, in species with bi‐partite life, postsettlement selection can magnify these genetic differences. The high fecundity (up to 500,000 eggs annually) and protracted larval duration (12–24 months) and dispersal of the southern rock lobster, Jasus edwardsii, make it a good test species for chaotic genetic patchiness and selection during early benthic life. Here, we used double digest restriction site‐associated DNA sequencing (ddRADseq) to investigate chaotic genetic patchiness and postsettlement selection in this species. We assessed differences in genetic structure and diversity of recently settled pueruli across four settlement years and between two sites in southeast Australia separated by approximately 1,000 km. Postsettlement selection was investigated by identifying loci under putative positive selection between recently settled pueruli and postpueruli and quantifying differences in the magnitude and strength of the selection at each year and site. Genetic differences within and among sites through time in neutral SNP markers indicated chaotic genetic patchiness. Recently settled puerulus at the southernmost site exhibited lower genetic diversity during years of low puerulus catches, further supporting this hypothesis. Finally, analyses of outlier SNPs detected fluctuations in the magnitude and strength of the markers putatively under positive selection over space and time. One locus under putative positive selection was consistent at both locations during the same years, suggesting the existence of weak postsettlement selection. 相似文献