首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhao Y  Wang T  Zhang W  Li X 《The New phytologist》2011,189(4):1122-1134
? The SOS signaling pathway plays an important role in plant salt tolerance. However, little is known about how the SOS pathway modulates organ development in response to salt stress. Here, the involvement of SOS signaling in NaCl-induced lateral root (LR) development in Arabidopsis was assessed. ? Wild-type and sos3-1 mutant seedlings on iso-osmotic concentrations of NaCl and mannitol were analyzed. The marker lines for auxin accumulation, auxin transport, cell division activity and stem cells were also examined. ? The results showed that ionic effect alleviates the inhibitory effects of osmotic stress on LR development. LR development of the sos3-1 mutant showed increased sensitivity specifically to low salt. Under low-salt conditions, auxin in cotyledons and LR primordia (LRP) of the sos3-1 mutant was markedly reduced. Decreases in auxin polar transport of mutant roots may cause insufficient auxin supply, resulting in defects not only in LR initiation but also in cell division activity in LRP. ? Our data uncover a novel role of the SOS3 gene in modulation of LR developmental plasticity and adaptation in response to low salt stress, and reveal a new mechanism for plants to sense and adapt to small changes of salt.  相似文献   

2.
The hydra mutants of Arabidopsis are characterized by a pleiotropic phenotype that shows defective embryonic and seedling cell patterning, morphogenesis, and root growth. We demonstrate that the HYDRA1 gene encodes a Delta8-Delta7 sterol isomerase, whereas HYDRA2 encodes a sterol C14 reductase, previously identified as the FACKEL gene product. Seedlings mutant for each gene are similarly defective in the concentrations of the three major Arabidopsis sterols. Promoter::reporter gene analysis showed misexpression of the auxin-regulated DR5 and ACS1 promoters and of the epidermal cell file-specific GL2 promoter in the mutants. The mutants exhibit enhanced responses to auxin. The phenotypes can be rescued partially by inhibition of auxin and ethylene signaling but not by exogenous sterols or brassinosteroids. We propose a model in which correct sterol profiles are required for regulated auxin and ethylene signaling through effects on membrane function.  相似文献   

3.
4.
The maize Vp1 gene and abi3 gene of Arabidopsis are believed to be orthologs based on similarities of the mutant phenotypes and amino acid sequence conservation. Here we show that expression of VP1 driven by the 35S promoter can partially complement abi3-6, a deletion mutant allele of abi3. The visible phenotype of seed produced from VP1 expression in the abi3 mutant background is nearly indistinguishable from wild type. VP1 fully restores abscisic acid (ABA) sensitivity of abi3 during seed germination and suppresses the early flowering phenotype of abi3. The temporal regulation of C1-beta-glucuronidase (GUS) and chlorophyll a/b binding protein (cab3)-GUS reporter genes in developing seeds of 35S-VP1 lines were similar to wild type. On the other hand, two qualitative differences are observed between the 35S-VP1 line and wild type. The levels of CRC and C1-GUS expression are markedly lower in the seeds of 35S-VP1 lines than in wild type suggesting incomplete complementation of gene activation functions. Similar to ectopic expression of ABI3 (Parcy et al., 1994), ectopic expression of VP1 in vegetative tissue enhances ABA inhibition of root growth. In addition, 35S-VP1 confers strong ABA inducible expression of the normally seed-specific cruciferin C (CRC) gene in leaves. In contrast, ectopic ABA induction of C1-GUS is restricted to a localized region of the root elongation zone. The ABA-dependent C1-GUS expression expanded to a broader area in the root tissues treated with exogenous application of auxin. Interestingly, auxin-induced lateral root formation is completely suppressed by ABA in 35S-VP1 plants but not in wild type. These results indicate VP1 mediates a novel interaction between ABA and auxin signaling that results in developmental arrest and altered patterns of gene expression.  相似文献   

5.
6.
7.
Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation step in auxin signaling. However, the exact mechanism by which SMAP1 functions in auxin signaling remains unknown. Here, we demonstrate that SMAP1 is required for normal plant growth and development and the root response to indole-3-acetic acid or methyl jasmonate in the auxin resistant1 (axr1) mutation background. Deletion analysis and green fluorescent protein/glutathione S-transferase pull-down assays showed that SMAP1 physically interacts with the CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME (CSN) via the SMAP1 F/D region. The extremely dwarf phenotype of the aar1-1 csn5a-1 double mutant confirms the functional role of SMAP1 in plant growth and development under limiting CSN functionality. Our findings suggest that SMAP1 is involved in the auxin response and possibly in other cullin-RING ubiquitin ligase-regulated signaling processes via its interaction with components associated with RELATED TO UBIQUITIN modification.  相似文献   

8.
9.
Since auxin was first isolated and characterized as a plant hormone, the underlying molecular mechanism of auxin signaling has been elucidated primarily in dicot plants represented by Arabidopsis. In monocot plants, the molecular mechanism of auxin signaling has remained unclear, despite various physiological experiments. To understand the function and mechanism of auxin signaling in rice ( Oryza sativa ), we focused on the IAA gene, a well-studied gene in Arabidopsis that serves as a negative regulator of auxin signaling. We found 24 IAA gene family members in the rice genome. OsIAA3 is one of these family members whose expression is rapidly increased in response to auxin. We produced transgenic rice harboring m OsIAA3 - GR , which can overproduce mutant OsIAA3 protein containing an amino acid change in domain II to cause a gain-of-function phenotype, by treatment with dexamethasone. The transgenic rice was insensitive to auxin and gravitropic stimuli, and exhibited short leaf blades, reduced crown root formation, and abnormal leaf formation. These results suggest that , in rice, auxin is important for development and its signaling is mediated by IAA genes.  相似文献   

10.
To understand the molecular mechanism of auxin action, mutants of Arabidopsis thaliana with altered responses to auxin have been identified and characterized. Here the isolation of two auxin-resistant mutants that define a new locus involved in auxin response, named AXR4, is reported. The axr4 mutations are recessive and map near the ch1 mutation on chromosome 1. Mutant plants are specifically resistant to auxin and defective in root gravitropism. Double mutants between axr4 and the recessive auxin-resistant mutants axr1-3 and aux1-7 were characterized to ascertain possible genetic interactions between the mutations. The roots of the axr4 axr1-3 double mutant plants are less sensitive to auxin, respond more slowly to gravity, and form fewer lateral roots than either parental single mutant. These results suggest that the two mutations have additive or even synergistic effects. The AXR1 and AXR4 gene products may therefore act in separate pathways of auxin response or perhaps perform partially redundant functions in a single pathway. The axr4 aux1-7 double mutant has the same sensitivity to auxin as the aux1-7 mutant but forms far fewer lateral roots than either parental single mutant. The aux1-7 mutation thus appears to be epistatic to axr4 with respect to auxin-resistant root elongation, whereas in lateral root formation, the effects of the two mutations are additive. The complexity of the genetic interactions indicated by these results may reflect differences in the mechanism of auxin action during root elongation and the formation of lateral roots. The AXR4 gene product, along with those of the AXR1 and AUX1 genes, is important for normal auxin sensitivity, gravitropic response in roots and lateral root formation.  相似文献   

11.
Jin J  Watt M  Mathesius U 《Plant physiology》2012,159(1):489-500
We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to nutrients is unclear. We treated wild-type and sunn-1 seedlings with four combinations of low or increased N (as nitrate) and C (as CO(2)) and determined responses in C/N partitioning, plant growth, root and nodule density, and changes in auxin transport. In both genotypes, nodule density was negatively correlated with tissue N concentration, while only the wild type showed significant correlations between N concentration and lateral root density. Shoot-to-root auxin transport was negatively correlated with shoot N concentration in the wild type but not in the sunn-1 mutant. In addition, the ability of rhizobia to alter auxin transport depended on N and C treatment as well as the SUNN gene. Nodule and lateral root densities were negatively correlated with auxin transport in the wild type but not in the sunn-1 mutant. Our results suggest that SUNN is required for the modulation of shoot-to-root auxin transport in response to altered N tissue concentrations in the absence of rhizobia and that this controls lateral root density in response to N. The control of nodule density in response to N is more likely to occur locally in the root.  相似文献   

12.
13.
Growth and development of the axr1 mutants of Arabidopsis.   总被引:25,自引:5,他引:20       下载免费PDF全文
C Lincoln  J H Britton    M Estelle 《The Plant cell》1990,2(11):1071-1080
We have recovered eight new auxin-resistant lines of Arabidopsis that carry mutations in the AXR1 gene. These eight lines, together with the 12 lines described in a previous report, define at least five different axr1 alleles. All of the mutant lines have a similar phenotype. Defects include decreases in plant height, root gravitropism, hypocotyl elongation, and fertility. Mutant line axr1-3 is less resistant to auxin than the other mutant lines and has less severe morphological abnormalities. This correlation suggests that the morphological defects are a consequence of a defect in auxin action. To determine whether the altered morphology of mutant plants is associated with changes in cell size or tissue organization, tissue sections were examined using scanning electron microscopy. No clear differences in cell size were observed between wild-type and mutant tissues. However, the vascular bundles of mutant stems were found to be less well differentiated than those in wild-type stems. The auxin sensitivity of rosette-stage plants was determined by spraying plants with auxin solutions. Mutant rosettes were found to be significantly less sensitive to exogenously applied auxin than wild-type rosettes, indicating that the AXR1 gene functions in aerial portions of the plant. Our studies suggest that the AXR1 gene is required for auxin action in most, if not all, tissues of the plant and plays an important role in plant development. Linkage studies indicate that the gene is located on chromosome 1 approximately 2 centiMorgans from the closest restriction fragment length polymorphism.  相似文献   

14.
Plant root development is mediated by the concerted action of the auxin and cytokinin phytohormones, with cytokinin serving as an antagonist of auxin transport. Here, we identify the AUXIN UP-REGULATED F-BOX PROTEIN1 (AUF1) and its potential paralog AUF2 as important positive modifiers of root elongation that tether auxin movements to cytokinin signaling in Arabidopsis (Arabidopsis thaliana). The AUF1 mRNA level in roots is strongly up-regulated by auxin but not by other phytohormones. Whereas the auf1 single and auf1 auf2 double mutant roots grow normally without exogenous auxin and respond similarly to the wild type upon auxin application, their growth is hypersensitive to auxin transport inhibitors, with the mutant roots also having reduced basipetal and acropetal auxin transport. The effects of auf1 on auxin movements may be mediated in part by the misexpression of several PIN-FORMED (PIN) auxin efflux proteins, which for PIN2 reduces its abundance on the plasma membrane of root cells. auf1 roots are also hypersensitive to cytokinin and have increased expression of several components of cytokinin signaling. Kinematic analyses of root growth and localization of the cyclin B mitotic marker showed that AUF1 does not affect root cell division but promotes cytokinin-mediated cell expansion in the elongation/differentiation zone. Epistasis analyses implicate the cytokinin regulator ARR1 or its effector(s) as the target of the SKP1-Cullin1-F Box (SCF) ubiquitin ligases assembled with AUF1/2. Given the wide distribution of AUF1/2-type proteins among land plants, we propose that SCF(AUF1/2) provides additional cross talk between auxin and cytokinin, which modifies auxin distribution and ultimately root elongation.  相似文献   

15.
16.
We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.  相似文献   

17.
To study the GH3 gene family of Arabidopsis, we investigated a flanking sequence database of Arabidopsis activation-tagged lines. We found a dwarf mutant, named yadokari 1-D (ydk1-D), that had a T-DNA insertion proximal to a GH3 gene. ydk1-D is dominant and has a short hypocotyl not only in light but also in darkness. Moreover, ydk1-D has a short primary root, a reduced lateral root number, and reduced apical dominance. A GH3 gene, named YDK1, was upregulated in ydk1-D, and YDK1 transgenic plants showed the ydk1-D phenotype. YDK1 gene expression was induced by exogenously applied auxin and regulated by auxin-response factor (ARF)7. In addition, YDK1 gene expression was downregulated by blue and far-red (FR) lights. Strong promoter activity of YDK1 was observed in roots and flowers. These results suggest that YDK1 may function as a negative component in auxin signaling by regulating auxin activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号