首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
空间分辨代谢组学即整合质谱成像和代谢组学技术,对动/植物组织和细胞中内/外源性代谢物的种类、含量和差异性空间分布进行精准测定。质谱成像技术因其具有无标记、非特异、高灵敏度、高化学覆盖、元素/分子同时检测等优势,被广泛应用于动/植物组织中各类代谢物、多肽和蛋白的时空分布研究。首先介绍了代谢组学和质谱成像技术的研究现状,然后重点综述了空间分辨代谢组学在动物组织、植物组织和单细胞水平上的前沿应用。最后展望了空间分辨代谢组学技术的现有瓶颈和未来发展方向。空间分辨代谢组学是继代谢组学之后又一门新兴的分子成像组学技术,能够无标记、可视化检测动物组织中外源性药物的吸收、分布、代谢和排泄,以及植物组织中多种代谢产物的生物合成、转运途径和积累规律。该技术将推动靶向药物发现、病理机制解析和动植物生长发育密切关联的空间代谢网络调控等前沿应用研究。  相似文献   

3.
Species of Aspergillus produce a diverse array of secondary metabolites, and recent genomic analysis has predicted that these species have the capacity to synthesize many more compounds. It has been possible to infer the presence of 55 gene clusters associated with secondary metabolism in Aspergillus flavus ; however, only three metabolic pathways—aflatoxin, cyclopiazonic acid (CPA) and aflatrem—have been assigned to these clusters. To gain an insight into the regulation of and to infer the ecological significance of the 55 secondary metabolite gene clusters predicted in A. flavus, we examined their expression over 28 diverse conditions. Variables included culture medium and temperature, fungal development, colonization of developing maize seeds and misexpression of laeA , a global regulator of secondary metabolism. Hierarchical clustering analysis of expression profiles allowed us to categorize the gene clusters into four distinct clades. Gene clusters for the production of aflatoxins, CPA and seven other unknown compound(s) were identified as belonging to one clade. To further explore the relationships found by gene expression analysis, aflatoxin and CPA production were quantified under five different cell culture environments known to be conducive or nonconducive for aflatoxin biosynthesis and during the colonization of developing maize seeds. Results from these studies showed that secondary metabolism gene clusters have distinctive gene expression profiles. Aflatoxin and CPA were found to have unique regulation, but are sufficiently similar that they would be expected to co-occur in substrates colonized with A. flavus .  相似文献   

4.
For adaptation to ever-changing environments,plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates(GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promotin...  相似文献   

5.
Metabolites are the intermediate and final products of metabolism, which play essential roles in plant growth, evolution and adaptation to changing climates. However, it is unclear how evolution contributes to metabolic variation in plants. Here, we investigated the metabolomics data from leaf and seed tissues in maize and rice. Using principal components analysis based on leaf metabolites but not seed metabolites, metabolomics data could be clearly separated for rice Indica and Japonica accessions, while two maize subgroups, temperate and tropical, showed more visible admixture. Rice and maize seed exhibited significant interspecific differences in metabolic variation, while within rice, leaf and seed displayed similar metabolic variations. Among 10 metabolic categories, flavonoids had higher variation in maize than rice, indicating flavonoids are a key constituent of interspecific metabolic divergence. Interestingly, metabolic regulation was also found to be reshaped dramatically from positive to negative correlations, indicative of the differential evolutionary processes in maize and rice. Moreover, perhaps due to this divergence significantly more metabolic interactions were identified in rice than maize. Furthermore, in rice, the leaf was found to harbor much more intense metabolic interactions than the seed. Our result suggests that metabolomes are valuable for tracking evolutionary history, thereby complementing and extending genomic insights concerning which features are responsible for interspecific differentiation in maize and rice.  相似文献   

6.
  • Plants have evolved diverse secondary metabolites to counteract biotic stress. Volatile organic compounds (VOCs) are released upon herbivore attack or pathogen infection. Recent studies suggest that VOCs can act as signalling molecules in plant defence and induce resistance in distant organs and neighbouring plants. However, knowledge is lacking on the function of VOCs in biotrophic fungal infection on cereal plants.
  • We analysed VOCs emitted by 13 ± 1-day-old barley plants (Hordeum vulgare L.) after mechanical wounding using passive absorbers and TD-GC/MS. We investigated the effect of pure VOC and complex VOC mixtures released from wounded plants on the barley–powdery mildew interaction by pre-exposure in a dynamic headspace connected to a powdery mildew susceptibility assay. Untargeted metabolomics and lipidomics were applied to investigate metabolic changes in sender and receiver barley plants.
  • Green leaf volatiles (GLVs) dominated the volatile profile of wounded barley plants, with (Z)-3-hexenyl acetate (Z3HAC) as the most abundant compound. Barley volatiles emitted after mechanical wounding enhanced resistance in receiver plants towards fungal infection. We found volatile-mediated modifications of the plant–pathogen interaction in a concentration-dependent manner. Pre-exposure with physiologically relevant concentrations of Z3HAC resulted in induced resistance, suggesting that this GLV is a key player in barley anti-pathogen defence.
  • The complex VOC mixture released from wounded barley and Z3HAC induced e.g. accumulation of chlorophyll, linolenic acid and linolenate-conjugated lipids, as well as defence-related secondary metabolites, such as hordatines in receiving plants. Barley VOCs hence induce a complex physiological response and disease resistance in receiver plants.
  相似文献   

7.
Methionine (Met) is an essential amino acid for all organisms. In plants, Met also functions as a precursor of plant hormones, polyamines, and defense metabolites. The regulatory mechanism of Met biosynthesis is highly complex and, despite its great importance, remains unclear. To investigate how accumulation of Met influences metabolism as a whole in Arabidopsis, three methionine over-accumulation (mto) mutants were examined using a gas chromatography–mass spectrometry-based metabolomics approach. Multivariate statistical analyses of the three mto mutants (mto1, mto2, and mto3) revealed distinct metabolomic phenotypes. Orthogonal projection to latent structures–discriminant analysis highlighted discriminative metabolites contributing to the separation of each mutant and the corresponding control samples. Though Met accumulation in mto1 had no dramatic effect on other metabolic pathways except for the aspartate family, metabolite profiles of mto2 and mto3 indicated that several extensive pathways were affected in addition to over-accumulation of Met. The pronounced changes in metabolic pathways in both mto2 and mto3 were associated with polyamines. The findings suggest that our metabolomics approach not only can reveal the impact of Met over-accumulation on metabolism, but also may provide clues to identify crucial pathways for regulation of metabolism in plants.  相似文献   

8.
Aflatoxins are notorious toxic secondary metabolites known for their impacts on human and animal health, and their effects on the marketability of key grain and nut crops. Understanding aflatoxin biosynthesis is the focus of a large and diverse research community. Concerted efforts by this community have led not only to a well-characterized biosynthetic pathway, but also to the discovery of novel regulatory mechanisms. Common to secondary metabolism is the clustering of biosynthetic genes and their regulation by pathway specific as well as global regulators. Recent data show that arrangement of secondary metabolite genes in clusters may allow for an important global regulation of secondary metabolism based on physical location along the chromosome. Available genomic and proteomic tools are now allowing us to examine aflatoxin biosynthesis more broadly and to put its regulation in context with fungal development and fungal ecology. This review covers our current understanding of the biosynthesis and regulation of aflatoxin and highlights new and emerging information garnered from structural and functional genomics. The focus of this review will be on studies in Aspergillus flavus and Aspergillus parasiticus, the two agronomically important species that produce aflatoxin. Also covered will be the important contributions gained by studies on production of the aflatoxin precursor sterigmatocystin in Aspergillus nidulans.  相似文献   

9.
This presentation develops a theory of the evolutionary origin and ecological implications of toxic microbial secondary metabolites. The theory is based on a model system that outlines cause—effect associations between pertinent biotypes in the aflatoxin contamination of developing maize kernels. The model suggests that the aflatoxin-producing fungi are natural digestive tract inhabitants of a number of insect species that feed on developing kernels. During feeding, the insect larvae introduce fungal propagules and provide infection sites on damaged kernels. The fungal association with insects exhibits extraordinary variability, ranging from symbiotic to pathogenic. Elaboration of aflatoxin by the fungus facilitates the pathogenic process in host insects. The theory contends that genetic information for secondary microbial metabolites evolved during ecosystem disequilibria. During periods of ecological stability, mechanisms evolved for repression of toxic secondary metabolite biosynthesis. The theory broadly suggests that contemporary agricultural activities presents the requisite milieu for production or toxic microbial secondary metabolites.  相似文献   

10.
Ectomycorrhizae (ECMs) are a highly context-dependent interactions that are not always beneficial for the plant host, sometimes leading to a decrease in plant growth. However, the molecular status of these plants remains unknown. We studied Populus × canescens microcuttings characterized by impaired growth in response to colonization by a Paxillus involutus strain via integrative proteomics–metabolomics analyses. The analysed strain was characterized by low compatibility and formed only mantles, not a Hartig net, in the majority of root tips. The increased abundance of photosynthetic proteins and foliar carbohydrates co-occurred with signals of intensified resource exchange via the stems of colonized plants. In the roots, intensified C metabolism resulted in the biosynthesis of secondary C compounds unavailable to the fungal partner but also C skeletons necessary to increase insufficient N uptake from the hyphae. The stress response was also detected in colonized plants but was similar to that reported previously during mutualistic ECM interactions. In colonized poplar plants, mechanisms to prevent imbalanced C/N trade-offs were activated. Root metabolism strongly depended on features of the whole plant, especially the foliar C/N budget. However, despite ECM-triggered growth impairment and the foliar nutrient status, the fungal partner was recognized to be a symbiotic partner.  相似文献   

11.
Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of crops are still not well understood. New molecular technologies, such as gene microarray analyses, quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops. With this fundamental understanding, we will be better able to design improved non-aflatoxigenic biocompetitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes the toxin will be valuable for developing an effective and lasting strategy for control of aflatoxin contamination.  相似文献   

12.
13.
Plant interactions with environmental factors cause changes in the metabolism and regulation of biochemical and physiological processes. Plant defense against pathogenic microorganisms depends on an innate immunity system that is activated as a result of infection. There are two mechanisms of triggering this system: basal immunity activated as a result of a perception of microbe-associated molecular patterns through pattern recognition receptors situated on the cell surface and effector-triggered immunity (ETI). An induced biosynthesis of bioactive secondary metabolites, in particular phytoalexins, is one of the mechanisms of plant defense to fungal infection. Results of the study on narrow leaf lupin (Lupinus angustifolius L.) plants infected with the anthracnose fungus Colletotrichum lupini and treated with fungal phytotoxic metabolites are described in the paper. The C. lupini phytotoxins were isolated from liquid cultures, purified and partially characterized with physicochemical methods. Accumulation of secondary metabolites on leaf surface and within the tissues of plants either infected, treated with the fungal phytotoxin or submitted to both treatments was studied using GC-MS and LC-MS, respectively. Substantial differences in isoflavone aglycones and glycoconjugate profiles occurred in response to different ways of plant treatment.  相似文献   

14.
15.
WhyAspergillus species produce aflatoxin remains an unsolved question. In this report we suggest that evolution of the aflatoxin biosynthesis gene cluster has been a multistep process. More than 300 million years ago a primordial cluster of genes allowed production of anthraquinones that may have served as insect attractants to facilitate spore dispersal. Later adaptive evolutionary steps introduced genes into the cluster that encoded enzymes associated with fungal virulence. These genes may have allowed the otherwise saprophytic fungi to be better able to colonize living plants. Later, genes for production of aflatoxins B1 and G1 were added to the basal cluster. Loss of the ability to produce aflatoxin G1 occurred with the divergence ofA. flavus, a species that, perhaps, was more successful than its ancestors at colonizing plants. This logical progression in evolutionary development of the aflatoxin biosynthetic cluster fits the phylogenetic data as well as known chemical reactivity of the initially formed anthraquinone polyketide metabolites.  相似文献   

16.
The soil-borne ascomycete Verticillium dahliae causes wilt disease in more than two hundred dicotyledonous plants including the economically important crop cotton, and results in a severe reduction in cotton fiber yield and quality. During infection, V. dahliae secretes numerous secondary metabolites, which act as toxic factors to promote the infection process. However, the mechanism underlying how V. dahliae secondary metabolites regulate cotton infection remains largely unexplored. In this study, we report that VdBre1, an ubiquitin ligase (E3) enzyme to modify H2B, regulates radial growth and conidia production of V. dahliae. The VdBre1 deletion strains show nonpathogenic symptoms on cotton, and microscopic inspection and penetration assay indicated that penetration ability of the ∆VdBre1 strain was dramatically reduced. RNA-seq revealed that a total of 1643 differentially expressed genes between the ∆VdBre1 strain and the wild type strain V592, among which genes related to lipid metabolism were significantly overrepresented. Remarkably, the volume of lipid droplets in the ∆VdBre1 conidia was shown to be smaller than that of wild-type strains. Further metabolomics analysis revealed that the pathways of lipid metabolism and secondary metabolites, such as steroid biosynthesis and metabolism of terpenoids and polyketides, have dramatically changed in the ∆VdBre1 metabolome. Taken together, these results indicate that VdBre1 plays crucial roles in cotton infection and pathogenecity, by globally regulating lipid metabolism and secondary metabolism of V. dahliae.  相似文献   

17.

Main conclusion

Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource. Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.
  相似文献   

18.
19.
Aflatoxin contamination is a major problem in maize, groundnut, chillies, cotton and tree nuts. These aflatoxins are low molecular weight toxic and carcinogenic secondary metabolites produced by Aspergillus flavus, A. parasiticus and A. nomius. In the present study, a total of 11 isolates of A. flavus isolated from groundnut, maize and chilli collected from different locations of Tamil Nadu, India were tested for their ability to produce aflatoxin B1 (AFB1) in vitro by indirect competitive enzyme-linked immunosorbent assay. The results show that the isolates vary in their level of toxin production. The amount of AFB1 produced by the toxigenic isolates of A. flavus ranged from 6.6 to 108.1?ng?ml?1. Among the various isolates of A. flavus, the isolate VKR produced the highest amount (108.1?ng?ml?1) of AFB1. The isolates viz. CBE1, CBE2, BSR1, BSR3 and BSR4 were found to be non-toxigenic. The genetic variability among these isolates was assessed by Random amplified polymorphic DNA (RAPD) analysis. DNA fragments of between 0.15 and 3.0?kb were obtained using 13 random primers, and each isolate differed in the size and number of PCR products indicating considerable polymorphism. Cluster analysis using Unweighted Pair Group Method with Arithmetic Mean clearly separated the isolates into four main clusters confirming the genetic diversity among the isolates of A. flavus. Both toxigenic and non-toxigenic isolates were intermingled in these four groups, indicating that no relationship exists between RAPD profile and the production of aflatoxin by A. flavus.  相似文献   

20.
Aflatoxins are produced as secondary metabolites under conducive climatic conditions by Aspergillus flavus. The incidence of aflatoxin varies with environmental conditions, genotype, and location. An expanded understanding of the interaction of the plant, fungus, and weather conditions is needed to further elucidate the field infection process of maize by A. flavus and subsequent aflatoxin contamination. One of the problems in evaluating maize hybrids for resistance to kernel infection and aflatoxin contamination is identifying a time period and environmental conditions that are most advantageous. Three maize genotypes (Pioneer Brand 3223, Mo18W × Mp313E, and Mp313E × Mp420) were evaluated from 1998 to 2002 in response to A. flavus inoculation and aflatoxin contamination and weather conditions favorable for aflatoxin contamination were identified. The highest aflatoxin levels were observed in 1998 and 2000 (1186 and 901 ng g−1; P < 0.0001); while the lowest levels were detected in 1999 (39 ng g−1). Pioneer 3223 had significantly higher levels (1198 ng g−1) than Mp313E × Mp420 (205 ng g−1), and Mo18W ×Mp313E (161 ng g−1; P < 0.0001). The hybrids had six weather-related variables in common that were positively correlated with aflatoxin accumulation. Four of these occurred during 65–85 days after planting and were temperature-related. These results suggest that regardless of the hybrid’s maturity or physiological development, the time from 65 to 85 days after planting may be indicative of a period of stress which leads to greater aflatoxin accumulation at harvest. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号