首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoporosis is a disease in which bone mineral density decreases due to abnormal activity of osteoclasts, and is commonly found in post-menopausal women who have decreased levels of female hormones. Sphingosylphosphorylcholine (SPC) is an important biological lipid that can be converted to sphingosine-1-phosphate (S1P) by autotaxin. S1P is known to be involved in osteoclast activation by stimulating osteoblasts, but bone regulation by SPC is not well understood. In this study, we found that SPC strongly inhibits RANKL-induced osteoclast differentiation. SPC-induced inhibitory effects on osteoclast differentiation were not affected by several antagonists of S1P receptors or pertussis toxin, suggesting cell surface receptor independency. However, SPC inhibited RANKL-induced calcineurin activation and subsequent NFATc1 activity, leading to decrease of the expression of Trap and Ctsk. Moreover, we found that bone loss in an experimental osteoporosis mouse model was recovered by SPC injection. SPC also blocked ovariectomy-induced body weight increase and Nfatc1 gene expression in mice. We also found that SPC inhibits RANKL-induced osteoclast differentiation in human macrophages. Since currently available treatments for osteoporosis, such as administration of female hormones or hormone receptor modulators, show serious side effects, SPC has potential as a new agent for osteoporosis treatment.  相似文献   

2.
The receptor activator of NF-kappaB ligand (RANKL) induces osteoclast differentiation from bone marrow cells in the presence of macrophage colony-stimulating factor. We found that treatment of bone marrow cells with SB203580 inhibited osteoclast differentiation via inhibition of the RANKL-mediated signaling pathway. To elucidate the role of p38 mitogen-activated protein (MAP) kinase pathway in osteoclastogenesis, we employed RAW264 cells which could differentiate into osteoclast-like cells following treatment with RANKL. In a dose-dependent manner, SB203580 but not PD98059, inhibited RANKL-induced differentiation. Among three MAP kinase families tested, this inhibition profile coincided only with the activation of p38 MAP kinase. Expression in RAW264 cells of the dominant negative form of either p38alpha MAP kinase or MAP kinase kinase (MKK) 6 significantly inhibited RANKL-induced differentiation of the cells. These results indicate that activation of the p38 MAP kinase pathway plays an important role in RANKL-induced osteoclast differentiation of precursor bone marrow cells.  相似文献   

3.
Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast pre-cursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclasto-genesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption.  相似文献   

4.
The effects of pyrroloquinoline quinine (PQQ) on RANKL-induced osteoclast differentiation and on wear particle-induced osteolysis were examined in this study. PQQ inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, and TRAP in RANKL-treated BMMs was inhibited by PQQ treatment. Moreover, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by PQQ. PQQ additionally inhibited the bone resorptive activity of differentiated osteoclasts. Further a UHMWPE-induced murine calvaria erosion model study was performed to assess the effects of PQQ on wear particle-induced osteolysis in vivo. Mice treated with PQQ demonstrated marked attenuation of bone erosion based on Micro-CT and histologic analysis of calvaria. These results collectively suggested that PQQ demonstrated inhibitory effects on osteoclast differentiation in vitro and may suppress wear particle-induced osteolysis in vivo, indicating that PQQ may therefore serve as a useful drug in the prevention of bone loss.  相似文献   

5.
6.
Phenolic compounds including tannins and flavonoids have been implicated in suppression of osteoclast differentiation/function and prevention of bone diseases. However, the effects of hydrolysable tannins on bone metabolism remain to be elucidated. In this study, we found that furosin, a hydrolysable tannin, markedly decreased the differentiation of both murine bone marrow mononuclear cells and Raw264.7 cells into osteoclasts, as revealed by the reduced number of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and decreased TRAP activity. Furosin appears to target at the early stage of osteoclastic differentiation while having no cytotoxic effect on osteoclast precursors. Analysis of the inhibitory mechanisms of furosin revealed that it inhibited the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1). Furthermore, furosin reduced resorption pit formation in osteoclasts, which was accompanied by disruption of the actin rings. Taken together, these results demonstrate that naturally occurring furosin has an inhibitory activity on both osteoclast differentiation and function through mechanisms involving inhibition of the RANKL-induced p38MAPK and JNK/AP-1 activation as well as actin ring formation.  相似文献   

7.
Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. The unique function and ability of osteoclasts to resorb bone makes them critical in both normal bone homeostasis and pathologic bone diseases such as osteoporosis and rheumatoid arthritis. Thus, new compounds that may inhibit osteoclastogenesis and osteoclast function may be of great value in the treatment of osteoclast-related diseases. In the present study, we examined the effect of jolkinolide B (JB), isolated from the root of Euphorbia fischeriana Steud on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. We found that JB inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages (BMMs) without cytotoxicity. Furthermore, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CtsK), and calcitonin receptor (CTR), was significantly inhibited. JB inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκBα degradation. Moreover, JB inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK). This study thus identifies JB as an inhibitor of osteoclast formation and provides evidence that JB might be an alternative medicine for preventing and treating osteolysis.  相似文献   

8.
BackgroundOsteoporosis is a threat to aged people who have excessive osteoclast activation and bone resorption, subsequently causing fracture and even disability. Inhibiting osteoclast differentiation and absorptive functions has become an efficient approach to treat osteoporosis, but osteoclast-targeting inhibitors available clinically remain rare. Kirenol (Kir), a bioactive diterpenoid derived from an antirheumatic Chinese herbal medicine Herba Siegesbeckiae, can treat collagen-induced arthritis in vivo and promote osteoblast differentiation in vitro, while the effects of Kir on osteoclasts are still unclear.PurposeWe explore the role of Kir on RANKL-induced osteoclastogenesis in vitro and bone loss in vivo.MethodsThe in vitro effects of Kir on osteoclast differentiation, bone resorption and the underlying mechanisms were evaluated with bone marrow-derived macrophages (BMMs). In vivo experiments were performed using an ovariectomy (OVX)-induced osteoporosis model.ResultsWe found that Kir remarkably inhibited osteoclast generation and bone resorption in vitro. Mechanistically, Kir significantly inhibited F-actinring formation and repressed RANKL-induced NF-κB p65 activation and p-p38, p-ERK and c-Fos expression. Moreover, Kir inhibited both the expression and nuclear translocation of NFATc1. Ca2+ oscillation and caveolin-1 (Cav-1) were also reduced by Kir during osteoclastogenesis in vitro. Consistent with these findings, 2–10 mg/kg Kir attenuated OVX-induced osteoporosis in vivo as evidenced by decreased osteoclast numbers and downregulated Cav-1 and NFATc1 expression.ConclusionsKir suppresses osteoclastogenesis and the Cav-1/NFATc1 signaling pathway both in vitro and in vivo and protects against OVX-induced osteoporosis. Our findings reveal Kir as a potential safe oral treatment for osteoporosis.  相似文献   

9.
10.
Identification of natural compounds that inhibit osteoclastogenesis will facilitate the development of antiresorptive treatment of osteolytic bone diseases. Asiaticoside is a triterpenoid derivative isolated from Centella asiatica, which exhibits varying biological effects like angiogenesis, anti-inflammation, wound healing, and osteogenic differentiation. However, its role in osteoclastogenesis remains unknown. Here, we show that Asiaticoside can suppress RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner. Asiaticoside attenuated the expression of osteoclast marker genes including Ctsk, Atp6v0d2, Nfatc1, Acp5, and Dc-stamp. Furthermore, Asiaticoside inhibited RANKL-mediated NF-κB and NFATc1 activities, and RANKL-induced calcium oscillation. Collectively, this study demonstrates that Asiaticoside inhibited osteoclast formation and function through attenuating RANKL-induced key signaling pathways, which may indicate that Asiaticoside is a potential antiresorptive agent against osteoclast-related osteolytic bone diseases.  相似文献   

11.
12.
13.
The aim of this study is to evaluate the effect of transient receptor potential vanilloid 4 (TRPV4) on osteoclast differentiation and osteoporosis, and to investigate the underlying mechanism. The results showed that TRPV4 expression and intracellular Ca2+ concentration were significantly upregulated in macrophage colony-stimulating factor (M-CSF)-stimulated and receptor activator of nuclear factor κΒ ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, TRPV4 overexpression further increased the M-CSF- and RANKL-induced number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and expression of osteoclastogenesis-related genes (TRAP, c-Fos, and nuclear factor of activated T cells [NFATc1]), activated the Ca 2+–calcineurin–NFATc1 signaling and increased autophagy-related proteins (light chain [LC] 3II and Beclin-1) during osteoclast differentiation. In contrast, TRPV4 knockdown exerted the opposite effects. Mechanically, inhibition of Ca 2+–calcineurin–NFATc1 signaling by FK506 or 11R-VIVIT abrogated the TRPV4 overexpression-induced osteoclast differentiation and autophagy induction. Moreover, suppression of autophagy by 3-methyladenine attenuated the TRPV4-induced osteoclast differentiation. In addition, short hairpin RNA TRPV4-lentivirus administration significantly diminished the increased levels of several osteoclastogenesis-related genes (RANKL, TRAP, and tumor necrosis factor-α), alleviated the disturbed microarchitecture of lumbar vertebrae, restored the decreased bone mineral density, ratio of bone volume to total tissue volume, trabecular thickness, and trabecular number, and diminished the increased trabecular separation, in ovariectomy (OVX)-induced osteoporosis mice. Consistent with the in vitro data, TRPV4 knockdown significantly decreased the induced number of TRAP-positive osteoclasts, the increased LC3 and NFATc1 expression in the lumbar vertebrae of OVX mice. In conclusion, TRPV4 knockdown suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca 2+–calcineurin–NFATc1 pathway.  相似文献   

14.
《Phytomedicine》2015,22(1):27-35
Osteopenic diseases, such as osteoporosis, are characterized by progressive and excessive bone resorption mediated by enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. Therefore, downregulation of RANKL downstream signals may be a valuable approach for the treatment of bone loss-associated disorders. In this study, we investigated the effects of the naphthohydroquinone mollugin on osteoclastogenesis and its function in vitro and in vivo. Mollugin efficiently suppressed RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) and bone resorbing activity of mature osteoclasts by inhibiting RANKL-induced c-Fos and NFATc1 expression. Mollugin reduced the phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation, including the MAP kinase, Akt, and GSK3β and inhibited the expression of different genes associated with osteoclastogenesis, such as OSCAR, TRAP, DC-STAMP, OC-STAMP, integrin αν, integrin β3, cathepsin K, and ICAM-1. Furthermore, mice treated with mollugin showed significant restoration of lipopolysaccharide (LPS)-induced bone loss as indicated by micro-CT and histological analysis of femurs. Consequently, these results suggested that mollugin could be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis.  相似文献   

15.
Osteoclasts are multinucleated cells that play a crucial role in bone resorption, and are formed by the fusion of mononuclear osteoclasts derived from osteoclast precursors of the macrophage lineage. Compounds that specifically target functional osteoclasts would be ideal candidates for anti-resorptive agents for clinical applications. In the present study, we investigated the effects of luteolin, a flavonoid, on the regulation of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, functions and signaling pathway. Addition of luteolin to a coculture system of mouse bone marrow cells and ST2 cells in the presence of 10−8 M 1α,25(OH)2D3 caused significant inhibition of osteoclastogenesis. Luteolin had no effects on the 1α,25(OH)2D3-induced expressions of RANKL, osteoprotegerin and macrophage colony-stimulating factor mRNAs. Next, we examined the direct effects of luteolin on osteoclast precursors using bone marrow macrophages and RAW264.7 cells. Luteolin completely inhibited RANKL-induced osteoclast formation. Moreover, luteolin inhibited the bone resorption by mature osteoclasts accompanied by the disruption of their actin rings, and these effects were reversely induced by the disruption of the actin rings in mature osteoclasts. Finally, we found that luteolin inhibited RANKL-induced osteoclastogenesis through the suppression of ATF2, downstream of p38 MAPK and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) expression, respectively. Taken together, the present results indicate that naturally occurring luteolin has inhibitory activities toward both osteoclast differentiation and functions through inhibition of RANKL-induced signaling pathway as well as actin ring disruption, respectively.  相似文献   

16.
17.
18.
Osteoclasts are multinuclear giant cells responsible for bone resorption in bone loss diseases, including rheumatoid arthritis, periodontitis, and the aseptic loosening of orthopedic implants. Because of injurious side effects with currently available drugs, it is necessary to continue research novel bone-protective therapies. Daidzin, a naturally occurring isoflavone found in leguminous plants, has numerous beneficial pharmacologic effects, including anti-cancer, anti-cholesterol, and anti-angiocardiopathy, promoting osteoblasts differentiation, and even anti-osteoporosis. However, the effect of daidzin on the regulation of osteoclast activity has not yet been investigated. In this study, our study showed that daidzin significantly inhibited receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages and the hydroxyapatite-resorbing activity of mature osteoclasts by inhibiting RANKL-induced NF-kB signaling pathway. In addition, daidzin could inhibit the expression of osteoclast marker genes, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), cellular oncogene fos (c-Fos), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK). Consistent with in vitro results, daidzin inhibited lipopolysaccharide-induced bone loss by suppressing the osteoclast differentiation. Together our data demonstrated that daidzin inhibits RANKL-induced osteoclastogenesis through suppressing NF-ĸB signaling pathway and that daidzin is a promising agent in the treatment of osteolytic diseases.  相似文献   

19.
Considering the high rate of osteoclast-related diseases worldwide, research targeting osteoclast formation/function is crucial. In vitro, we demonstrated that chitooligosaccharide (CS) dramatically inhibited osteoclastogenesis as well as osteoclast function dose-dependently. CS suppressed osteoclast-specific genes expression during osteoclastogenesis. Furthermore, we found that CS attenuated receptor activator of nuclear factor kappa B ligand (RANKL)-mediated mitogen-activated protein kinase (MAPK) pathway involving p38, erk1/2, and jnk, leading to the reduced expression of c-fos and nuclear factor of activated T cells c1 (NFATc1) during osteoclast differentiation. In vivo, we found CS protected rats from periodontitis-induced alveolar bone loss by micro-computerized tomography and histological analysis. Overall, CS inhibited RANKL-induced osteoclastogenesis and ligature-induced rat periodontitis model, probably by suppressing the MAPK/c-fos/NFATc1 signaling pathway. Therefore, CS may be a safe and promising treatment for osteoclast-related diseases.  相似文献   

20.
Osteoclasts are highly differentiated terminal cells formed by fusion of hematopoietic stem cells. Previously, osteoprotegerin (OPG) inhibit osteoclast differentiation and bone resorption by blocking receptor activator of nuclear factor-κB ligand (RANKL) binding to RANK indirect mechanism. Furthermore, autophagy plays an important role during osteoclast differentiation and function. However, whether autophagy is involved in OPG-inhibited osteoclast formation and bone resorption is not known. To elucidate the role of autophagy in OPG-inhibited osteoclast differentiation and bone resorption, we used primary osteoclast derived from mice bone marrow monocytes/macrophages (BMM) by induced M-CSF and RANKL. The results showed that autophagy-related proteins expression were upregulated; tartrate-resistant acid phosphatase-positive osteoclast number and bone resorption activity were decreased; LC3 puncta and autophagosomes number were increased and activated AMPK/mTOR/p70S6K signaling pathway. In addition, chloroquine (as the autophagy/lysosome inhibitor, CQ) or rapamycin (as the autophagy/lysosome inhibitor, Rap) attenuated osteoclast differentiation and bone resorption activity by OPG treatment via AMPK/mTOR/p70S6K signaling pathway. Our data demonstrated that autophagy plays a critical role in OPG inhibiting osteoclast differentiation and bone resorption via AMPK/mTOR/p70S6K signaling pathway in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号