共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular mechanisms that distinguish self and non-self are fundamental in innate immunity to prevent infections in plants and animals. Recognition of the conserved microbial components triggers immune responses against a broad spectrum of potential pathogens. In Arabidopsis, bacterial flagellin was perceived by a leucine-rich repeat-receptor-like kinase (LRR-RLK) FLS2. Upon flagellin perception, FLS2 forms a complex with another LRR-RLK BAK1. The intracellular signaling events downstream of FLS2/BAK1 receptor complex are still poorly understood. We recently identified a receptor-like cytoplasmic kinase (RLCK) BIK1 that associates with flagellin receptor complex to initiate plant innate immunity. BIK1 is rapidly phosphorylated upon flagellin perception in an FLS2- and BAK1-dependent manner. BAK1 directly phosphorylates BIK1 with an in vitro kinase assay. Plants have evolved a large number of RLCK genes involved in a wide range of biological processes. We provided evidence here that additional RLCKs could also be phosphorylated by flagellin and may play redundant role with BIK1 in plant innate immunity. 相似文献
2.
天然纤维素的结晶区必需在内、外切纤维素酶的协同作用下,始可被降解,这是纤维素降解的限速步骤。内、外切纤维素酶均为β-1,4-糖苷键的水解酶,但单一的内、外切纤维素酶却都不能水解天然纤维素的结晶区。内、外切纤维素酶怎样协同降解纤维素的机理一直未得阐明,是天然纤维素降解机制研究中的难点。纤维素酶分子是由具有催化功能的催化结构域(catalytic domain,CD)和具有结合纤维素功能的纤维素结合(吸附)结构域(cellulse biding domain,CBD)及涟结它们的链结区(linker)序列组成。已知一细菌的CBD在吸附纤维素后,纤维素聚合物断裂形成短小纤维,但这一现象还未在真菌中有类似发现,通过对插入质粒pUC-18上的微紫青霉外切葡聚糖纤维二糖水解酶CBHI的 cDNA基因,进行系列序列定向缺失等体外操作,得到了催化结构域序列缺失的重组质粒,转化大肠杆菌JM109后,利用纤维素结合结构域CBD可吸附纤维素的特性,筛选到含CBD编码区的转化子PUC18G,生产出了LacZ-CBD融合蛋白,经木瓜蛋白酶有限酶切后,分离纯化得到了CBD结构域及其链结区称为:CBDCBHI。经X光衍射、红外光谱分析、热活力测定和扫描电镜观察表明,CBDCBHI吸附纤维素后,能够导致纤维素聚合物氢键断裂,结晶度减低和形成短纤维,从而在底物可及性上为内切葡聚糖酶的水解糖化作用提供了条件,为真菌内、外切纤维素酶协同降解天然纤维素的作用机制提供了实验支持,并提出了内切纤维素酶的水解作用可为外切纤维素酶吸附纤维素提供能量的推论。 相似文献
3.
酶的固定化作为一种重要的技术,已在生物催化领域得到了广泛的应用。现将来源于普拉特链霉菌3304(Streptomyces platensis NTU3304)产生的胞外L-谷氨酸氧化酶(L-glutamate oxidase,Gox)基因gox融合到来源于粪碱纤维单胞菌Cellulomonas fimi的纤维素结合域(CBDcex)的基因上,构建表达载体p ETM10-Gox-CBD,并在大肠杆菌中表达。通过蛋白纯化获得融合蛋白,并命名为Gox-CBD。利用CBD对微晶纤维素特异性吸附的特性将其固定在微晶纤维素上,并对固定化酶的制备条件、结合量、酶学性质及其微晶纤维素结合稳定性等进行了研究。在4℃条件下结合约1 h,融合蛋白Gox-CBD结合在纤维素上的结合量即可达到9.0 mg/g。通过对重组型、融合表达游离的以及固定化在微晶纤维素上的谷氨酸氧化酶的酶学性质进行比较发现,固定化酶的比酶活有所降低;但固定化酶的热稳定性相对于游离酶有了很大的提高,在60℃孵育30 min后还保留有约70%的活性,而游离的重组Gox在相同条件下几乎完全失去活性。当固定化结合蛋白在p H10或者盐浓度5 mmol/L的Na Cl条件下可以牢固结合。并且可以通过一步纯化方法固定化融合蛋白Gox-CBD于微晶纤维素上。因此,L-谷氨酸氧化酶与纤维素结合域融合表达的研究为蛋白的纯化及酶的固定化提供了一种新策略。 相似文献
4.
5.
P. Azizi S. N. A. Abdullah N. Nejat M. Maziah M. M. Hanafi 《Critical reviews in biotechnology》2016,36(1):165-174
The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism’s life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant–pathogen interactions and integrated defense responses in rice. 相似文献
6.
7.
Bharat Bhusan Majhi Guy Sobol Sarah Gachie Shivakumar Sreeramulu Guido Sessa 《Molecular Plant Pathology》2021,22(7):786-799
Pattern-triggered immunity (PTI) is typically initiated in plants by recognition of pathogen- or damage-associated molecular patterns (PAMP/DAMPs) by cell surface-localized pattern recognition receptors (PRRs). Here, we investigated the role in PTI of Arabidopsis thaliana brassinosteroid-signalling kinases 7 and 8 (BSK7 and BSK8), which are members of the receptor-like cytoplasmic kinase subfamily XII. BSK7 and BSK8 localized to the plant cell periphery and interacted in yeast and in planta with FLS2, but not with other PRRs. Consistent with a role in FLS2 signalling, bsk7 and bsk8 single and bsk7,8 double mutant plants were impaired in several immune responses induced by flg22, but not by other PAMP/DAMPs. These included resistance to Pseudomonas syringae and Botrytis cinerea, reactive oxygen species accumulation, callose deposition at the cell wall, and expression of the defence-related gene PR1, but not activation of MAP kinases and expression of the FRK1 and WRKY29 genes. bsk7, bsk8, and bsk7,8 plants also displayed enhanced susceptibility to P. syringae and B. cinerea. Finally, BSK7 and BSK8 variants mutated in their myristoylation site or in the ATP-binding site failed to complement defective phenotypes of the corresponding mutants, suggesting that localization to the cell periphery and kinase activity are critical for BSK7 and BSK8 functions. Together, these findings demonstrate that BSK7 and BSK8 play a role in PTI initiated by recognition of flg22 by interacting with the FLS2 immune receptor. 相似文献
8.
T Reinikainen L Ruohonen T Nevanen L Laaksonen P Kraulis T A Jones J K Knowles T T Teeri 《Proteins》1992,14(4):475-482
The function of the cellulose-binding domain (CBD) of the cellobiohydrolase I of Trichoderma reesei was studied by site-directed mutagenesis of two amino acid residues identified by analyzing the 3D structure of this domain. The mutant enzymes were produced in yeast and tested for binding and activity on crystalline cellulose. Mutagenesis of the tyrosine residue (Y492) located at the tip of the wedge-shaped domain to alanine or aspartate reduced the binding and activity on crystalline cellulose to the level of the core protein lacking the CBD. However, there was no effect on the activity toward small oligosaccharide (4-methylumbelliferyl beta-D-lactoside). The mutation tyrosine to histidine (Y492H) lowered but did not destroy the cellulose binding, suggesting that the interaction of the pyranose ring of the substrate with an aromatic side chain is important. However, the catalytic activity of this mutant on crystalline cellulose was identical to the other two mutants. The mutation P477R on the edge of the other face of the domain reduces both binding and activity of CBHI. These results support the hypothesis that both surfaces of the CBD are involved in the interaction of the binding domain with crystalline cellulose. 相似文献
9.
Zhu Liu Patrick Bartlow Robert M. Dilmore Yee Soong Zhiwei Pan Richard Koepsel Mohammad Ataai 《Biotechnology progress》2009,25(1):68-74
Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2. A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3? and H+. Cost‐efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA‐based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
10.
The cost of cellulolytic enzymes is one barrier to the economic production of fermentable sugars from lignocellulosic biomass for the production of fuels and chemicals. One functional characteristic of cellulolytic enzymes that improves reaction kinetics over mineral acids is a cellulose binding domain that concentrates the catalytic domain to the substrate surface. We have identified maleic acid as an attractive catalytic domain with pK(a) and dicarboxylic acid structure properties that hydrolyze cellulose while producing minimal degradation of the glucose formed. In this study we report results of a rapid chromatographic method to assess the binding characteristics of potential cellulose binding domains for the construction of a synthetic cellulase over a wide range of temperatures (20 degrees to 120 degrees C). Aromatic, planar chemical structures appear to be key indicators of cellulose adsorption. Indole, the side-chain of the amino acid tryptophan, has been shown to reversibly adsorb to cellulose at temperatures between 30 degrees and 120 degrees C. Trypan blue, a polyaromatic, planar molecule, was shown to be irreversibly adsorbed to cotton cellulose at temperatures of <120 degrees C on the time scale of the experiments. These results confirm the importance of hydrophobic cellulose and the cellulose-binding component of cellulolytic enzymes and cellulolytic enzyme mimetics. 相似文献
11.
《Biotechnic & histochemistry》2013,88(5):215-217
Deparaffinized, 3-5μ, sections are brought to water, oxidized 3.5 min in an equal-parts mixture of 0.3% H2SO4 and 0.3% KMnO4, and decolorized with 4% K2S2O5. Nuclei are stained with Gomori's (1939) chromium-hematoxylin, and cell granules with Cason's (1950) mixture. The eosinophilic cells of the hypophysis and the alpha cells of pancreatic islets (of Langerhans) stain carmine red; basophilic and beta cells stain dark blue. Heidenhain's susa is the most suitable fixative for hypophysis, Bouin's fluid for pancreas; but a satisfactory result is obtainable after formalin-sublimate or plain formalin. Besides studying the ratio of the cell types in the hypophysis or in pancreatic islets, it is possible to estimate the granule content of the cells. The method works on human autopsy material provided fixation of hypophysis occurs within 24 hr, and. pancreas, 12 hr post mortem, and it is suitable also for quite fresh organs. 相似文献
12.
Toll样受体介导的信号转导通路在对抗外来病原体的天然免疫应答中起重要作用。Toll样受体是一个天然模板识别受体家族,能识别固有性模板(微生物和哺乳动物所共有的病原相联的分子模板PAMPs)。Toll样受体通过巨噬细胞和其他免疫细胞来识别,其中TLR4识别内毒素、TLR2识别肽聚糖、TLR9识别细菌DNA、TLR5识别鞭毛蛋白、TLR3识别双链RNA等。本探讨了多种Toll受体家族成员在动物体内识别机理及功能,概述了其应用研究进展。 相似文献
13.
设计并表达可用于纯化IgG的新型高栽量抗体结合蛋白CBD—SPG。利用基因重组技术将纤维素结合结构域(Cellulose Binding Domain,CBD)基因插入到表达载体pET28a—SPG中,获得重组质粒pET28a—CBD—SPG,并转化大肠杆菌曰位J(DE3)。IPTG诱导CBD—SPG融合蛋白表达,并用SDS—PAGE和Westernblot对表达产物进行鉴定。重组表达质粒pET28a—CBD-SPG经双酶切及测序验证无误;表达产物经SDS.PAGE和WesternBlot分析表明融合蛋白的表观分子量约为40kD;CBD—SPG具有良好的结合纤维素和抗体的能力,晶体纤维素Avicelphl01对CBD—SPG的载量可达11.61mg/g(w/w)。成功构建并运用原核系统表达CBD-SPG;CBD—SPG在保持良好抗体结合能力的同时,更具有了结合纤维素的能力,有望成为一种新型的亲和材料。 相似文献
14.
昆虫免疫识别与病原物免疫逃避机理研究进展 总被引:1,自引:0,他引:1
昆虫在长期进化过程中形成复杂的天然免疫系统,病原识别是启动下游免疫反应的第一步,这一过程主要是由不同的模式识别蛋白来完成的。目前发现并鉴定的昆虫模式识别蛋白主要包括肽聚糖识别蛋白、类免疫球蛋白、β-1,3-葡聚糖结合蛋白、C型凝集素及具多功能的载脂蛋白等,不同的蛋白种类具有不同的结构、功能及识别对象。与昆虫免疫识别相对应的是,不同昆虫病原物在进化过程中发展出不同策略的免疫逃避能力,以战胜宿主免疫而致病或最终杀死昆虫。本文就昆虫免疫过程中不同模式识别蛋白的结合对象、结构与功能,以及逐渐兴起的病原物通过分子伪装等进行免疫逃避的研究进展进行了综述。并在此基础上,作者就昆虫免疫与昆虫病理研究的发展方向进行了展望,认为只有当两方面研究相结合时,才能更好地揭示昆虫宿主与病原物之间免疫与抗免疫的动态相互作用过程。 相似文献
15.
L.M. Lavan J.S.Van Dyk H. Chan R.H. Doi B.I. Pletschke 《Letters in applied microbiology》2009,48(4):419-425
Aims: To investigate the effect that environmental factors have on Clostridium cellulovorans cellulose binding domain (CBD) binding to a semi-crystalline cellulose ligand, namely Avicel.
Methods and Results: The behaviour of a 58 kDa mini-CbpA protein containing the CBD from the scaffoldin protein of C. cellulovorans was studied in the presence of various environmental factors, in order to determine whether such factors promote or reduce CBD binding to its ligand, thus potentially affecting its activity on the substrate. The amount of binding was found to be dependent on the Avicel concentration and optimal binding occurred when the ligand concentration was 15 mg ml−1 . Optimal CBD binding occurred at pH 7·0 and at an incubation temperature of 28°C. The effects of dithiothreitol (DTT), 2-mercaptoethanol, acetone, butanol, ethanol and butyric acid were also investigated.
Conclusions: Temperature, pH, DTT, 2-mercaptoethanol and solvents were shown to affect the binding of C. cellulovorans CBD to Avicel.
Significance and Impact of the Study: Clostridium cellulovorans CBD binding to Avicel is affected by physical conditions and chemicals. 相似文献
Methods and Results: The behaviour of a 58 kDa mini-CbpA protein containing the CBD from the scaffoldin protein of C. cellulovorans was studied in the presence of various environmental factors, in order to determine whether such factors promote or reduce CBD binding to its ligand, thus potentially affecting its activity on the substrate. The amount of binding was found to be dependent on the Avicel concentration and optimal binding occurred when the ligand concentration was 15 mg ml
Conclusions: Temperature, pH, DTT, 2-mercaptoethanol and solvents were shown to affect the binding of C. cellulovorans CBD to Avicel.
Significance and Impact of the Study: Clostridium cellulovorans CBD binding to Avicel is affected by physical conditions and chemicals. 相似文献
16.
Anna Wielgoss Jan Nechwatal Carolin Bogs & Kurt Mendgen 《FEMS microbiology ecology》2009,69(2):255-265
In a 3-year-study, we analysed the population dynamics of the reed pathogen Pythium phragmitis and other reed-associated oomycetes colonizing fresh and dried reed leaves in the littoral zone of a large lake. Oomycete communities derived from internal transcribed spacer clone libraries were clearly differentiated according to substrate and seasonal influences. In fresh leaves, diverse communities consisting of P. phragmitis and other reed-associated pathogens were generally dominant. Pythium phragmitis populations peaked in spring with the emergence of young reed shoots, and in autumn after extreme flooding events. In summer it decreased with falling water levels, changing water chemistry and rising temperatures. Another Pythium species was also highly abundant in fresh leaves throughout the year and might represent a new, as-yet uncultured reed pathogen. In dried leaves, reed pathogens were rarely detected, whereas saprophytic species occurred abundantly during all seasons. Saprophyte communities were less diverse, less temperature sensitive and independent of reed development. In general, our results provide evidence for the occurrence of highly specialized sets of reed-associated oomycetes in a natural reed ecosystem. Quantitative analyses (clone abundances and quantitative real-time PCR) revealed that the reed pathogen P. phragmitis is particularly affected by changing water levels, water chemistry and the stage of reed development. 相似文献
17.
The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects tomato and Arabidopsis plants, and is a model for studying the molecular basis of bacterial disease. Pst DC3000 secretes a battery of largely uncharacterized effector proteins into host cells via a type-III secretion system (TTSS). Little is currently known about the molecular mechanisms by which individual TTSS effectors promote virulence. The effector HopAO1 has similarity to protein tyrosine phosphatases, including a conserved catalytic site, and suppresses the hypersensitive response (HR) in some non-host plants. Whether HopAO1 has a similar effect in the host Arabidopsis is not clear. Here, we show that transgenic expression of HopAO1 in Arabidopsis suppresses callose deposition elicited by the Pst DC3000 hrpA mutant, and allows the normally non-pathogenic hrpA mutant to multiply within the leaf tissue. HopAO1 also suppresses resistance to Pst DC3000 induced by flg22, a pathogen-associated molecular pattern (PAMP). However, HopAO1 does not suppress the HR triggered by several classical avirulence genes. These results suggest that HopAO1 targets primarily PAMP-induced innate immunity in Arabidopsis. The virulence function of HopAO1 is dependent on an intact phosphatase catalytic site, as transgenic plants expressing a catalytically inactive derivative do not show these effects. Intriguingly, expression of the catalytically inactive HopAO1 has a dominant-negative effect on the function of the wild-type HopAO1. Analysis of mitogen-activated protein kinase (MAPK) activity suggests that HopAO1 targets a step downstream or independent of MAPK activation. Genome-wide expression analysis revealed that expression of several well-known defense genes was suppressed in hrpA mutant-infected HopAO1 transgenic plants. 相似文献
18.
A homogeneous cellulose-binding module(CBM)of cellobiohydrolase I(CBHI)from Trichoderma pseudokoningii S-38 was obtained by the limited proteolysis with papain and a series of chromatographs filtration.Analysis of FT-IR spectra demonstrated that the structural changes result from a weakening and splitting of the hydrogen bond network in cellulose by the action of CBMCBHI at 40℃for 24 h.The results of molecular dynamic simulations are consistent with the experimental conclusions, and provide a nanoscopic view of the mechanism that strong and medium H-bonds decreased dramatically when CBM was bound to the cellulose surface.The function of CBMCBHI is not only limited to locating intact CBHI in close proximity with cellulose fibrils,but also is involved in the structural disruption at the fibre surface.The present studies provided considerable evidence for the model of the intramolecular synergy between the catalytic domain and their CBMs. 相似文献
19.
Xin Zhang Chunhua Zhai Chenlei Hua Min Qiu Yujuan Hao Pingping Nie Wenwu Ye Yuanchao Wang 《Molecular Plant Pathology》2016,17(2):272-285
Zoospore chemotaxis to soybean isoflavones is essential in the early stages of infection by the oomycete pathogen Phytophthora sojae. Previously, we have identified a G‐protein α subunit encoded by PsGPA1 which regulates the chemotaxis and pathogenicity of P. sojae. In the present study, we used affinity purification to identify PsGPA1‐interacting proteins, including PsHint1, a histidine triad (HIT) domain‐containing protein orthologous to human HIT nucleotide‐binding protein 1 (HINT1). PsHint1 interacted with both the guanosine triphosphate (GTP)‐ and guanosine diphosphate (GDP)‐bound forms of PsGPA1. An analysis of the gene‐silenced transformants revealed that PsHint1 was involved in the chemotropic response of zoospores to the isoflavone daidzein. During interaction with a susceptible soybean cultivar, PsHint1‐silenced transformants displayed significantly reduced infectious hyphal extension and caused a strong cell death in plants. In addition, the transformants displayed defective cyst germination, forming abnormal germ tubes that were highly branched and exhibited apical swelling. These results suggest that PsHint1 not only regulates chemotaxis by interacting with PsGPA1, but also participates in a Gα‐independent pathway involved in the pathogenicity of P. sojae. 相似文献
20.
Teresa Matamá Rita Araújo Georg M. Gübitz Margarida Casal Artur Cavaco‐Paulo 《Biotechnology progress》2010,26(3):636-643
In the present work, we describe for the first time the specific role of cutinase on surface modification of cellulose acetate fibers. Cutinase exhibits acetyl esterase activity on diacetate and triacetate of 0.010 U and 0.007 U, respectively. An increase on the hydroxyl groups at the fiber surface of 25% for diacetate and 317% for triacetate, after a 24 h treatment, is estimated by an indirect assay. Aiming at further improvement of cutinase affinity toward cellulose acetate, chimeric cutinases are genetically engineered by fusing the 3′‐end coding sequence with a bacterial or a fungal carbohydrate‐binding module and varying the linker DNA sequence. A comparative analysis of these genetic constructions is presented showing that, the superficial regeneration of cellulose hydrophilicity and reactivity on highly substituted cellulose acetates is achieved by chimeric cutinases. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献