首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Arabidopsis IMMUTANS gene encodes a plastid homolog of the mitochondrial alternative oxidase, which is associated with phytoene desaturation. Upon expression in Escherichia coli, this protein confers a detectable cyanide-resistant electron transport to isolated membranes. In this assay this activity is sensitive to n-propyl-gallate, an inhibitor of the alternative oxidase. This protein appears to be a plastid terminal oxidase (PTOX) that is functionally equivalent to a quinol:oxygen oxidoreductase. This protein was immunodetected in achlorophyllous pepper (Capsicum annuum) chromoplast membranes, and a corresponding cDNA was cloned from pepper and tomato (Lycopersicum esculentum) fruits. Genomic analysis suggests the presence of a single gene in these organisms, the expression of which parallels phytoene desaturase and ζ-carotene desaturase gene expression during fruit ripening. Furthermore, this PTOX gene is impaired in the tomato ghost mutant, which accumulates phytoene in leaves and fruits. These data show that PTOX also participates in carotenoid desaturation in chromoplasts in addition to its role during early chloroplast development.  相似文献   

2.
We report a comprehensive proteome analysis of chromoplasts from bell pepper (Capsicum annuum L.). The combination of a novel strategy for database-independent detection of proteins from tandem mass spectrometry (MS/MS) data with standard database searches allowed us to identify 151 proteins with a high level of confidence. These include several well-known plastid proteins but also novel proteins that were not previously reported from other plastid proteome studies. The majority of the identified proteins are active in plastid carbohydrate and amino acid metabolism. Among the most abundant individual proteins are capsanthin/capsorubin synthase and fibrillin, which are involved in the synthesis and storage of carotenoids that accumulate to high levels in chromoplasts. The relative abundances of the identified chromoplast proteins differ remarkably compared with their abundances in other plastid types, suggesting a chromoplast-specific metabolic network. Our results provide an overview of the major metabolic pathways active in chromoplasts and extend existing knowledge about prevalent metabolic activities of different plastid types.  相似文献   

3.
珊瑚豆果实成熟过程中叶绿体转化为杂色体的研究   总被引:3,自引:0,他引:3  
珊瑚豆 (Solanum pseudo- capsicum var.diflorum (Vell.) Bitter)果实成熟过程中 ,果实颜色的变化和叶绿素含量降低及类胡萝卜素含量增长相符合。对果实中叶绿体转化为杂色体进行了电镜观察。早期绿色果实的特点是叶绿体具典型的基粒 -基粒间类囊体结构。在黄绿色果实时期叶绿体类囊体系统解体 ,代之以少数非叶绿素的单个类囊体和积累大的嗜锇的质体小球。质体转变为所谓的原质体。这表明叶绿体在果实成熟中的脱分化过程。当果实达到黄色阶段 ,这些质体所含的质体小球开始从中央形成质体小管的结构。最初质体小球中央变为半透明 ,认为是质体累积胡萝卜素的开始。随着质体小球的延长 ,小管从小球中伸出。这些小管围以电子致密的膜 ,中央是半透明的轴心。与此同时 ,在质体基质中出现一系列发育不同阶段的小泡 ,似乎是形成新的质体小球的过程。在成熟的橙色和橙红色果实中的杂色体中只包含无数小管和小的质体小球。质体小管在数量和长度上增长 ,充满成熟的杂色体。无数质体小球分布在小管之间的空间中。成熟杂色体从脱分化的原质体的重建是真正的再分化过程。可以作出结论 ,珊瑚豆果实叶绿体转化为杂色体实质上是一个脱分化和再分化过程  相似文献   

4.
Determination of chlorophyll and carotenoid contents in the ectocarp during fruit ripening in Solanum pseudo-capsicum var. diflorurn (Veil.) Bitter revealed that the changes of fruit colour coincided with the decline of chlorophyll and the increase of carotenoid contents. The conversion of chloroplasts to chromoplasts in the fruit was studied by electron microscopy. The early green fruit was characterized by chloroplasts with a typical grana-intergranal thylakoid structure. At yellow-green fruit stage the thylakoid system was disintegrated and replaced by few non-chlorophyllous single thylakoids, with accumulation of large osmiophilic plastoglobules. The plastids developed as the so-called proplastids. These indicated dedifferentiation of chloroplasts in a ripening fruit. When the fruit reached its yellow stage, numerous large plastoglobules contained in the young chromoplasts frequently showed transitional changes to plastid tubule structure. At first, the center of plastoglobules became semi-translucent. It was believed that the young chromoplast were in an initial state of carotenoid deposition, followed by plastoglobules elongation and tubule protrution from the globules. These tubules were surrounded with an electron dense membranous sheath leaving the core semi-translucent. Concurrently a series of vesicles in different developmental stages appeared from the stroma of the plastid, likely representing a process of formation of numerous small new plastoglobules. In the chromoplasts of a ripe orange-or orange red-colored fruit only numerous tubules and small plastoglobules were present. The plastid tubules increased in number and elongated in length filling the mature chromoplast. Numerous small plastoglobules also increased and distributed in the spaces between tubules. These results indicated that the reconstruction of a mature chromoplast from a dedifferentiated plastid was really a form of redifferentiation, and it might be concluded that the conversion of chloroplast to chromoplast in the fruit of S. pseudo-capsicum var. diflorum, in fact, was a processes of dedifferentiation and redifferentiation.  相似文献   

5.
In chromoplast differentiation during flower formation in Narcissus pseudonarcissus, the molecular chaperones chaperonin 60 (Cpn60; alpha and beta) and heat-shock protein 70 (Hsp70) greatly increase in abundance. Both were purified and shown to be present in a functional form in chromoplasts, indicating their requirement in the extensive structural rearrangements during the chloroplast-to-chromoplast transition. The purified proteins, sequenced N terminally and from internal peptides, showed strong homology to plastid Cpn60 and Hsp 70 representatives from other plant species. During chromoplast differentiation, the carotenoid biosynthetic pathway is strongly induced. The corresponding enzymes are all nuclear encoded and form a large, soluble, hetero-oligomeric protein complex after import but prior to their membrane attachment. By immunoprecipitations we have shown that the plastid Hsp70 is a structural constituent of a soluble entity also containing phytoene desaturase.  相似文献   

6.
7.
8.
9.
10.
Loquat (Eriobotrya japonica Lindl.) can be sorted into red- and white-fleshed cultivars. The flesh of Luoyangqing (LYQ, red-fleshed) appears red-orange because of a high content of carotenoids while the flesh of Baisha (BS, white-fleshed) appears ivory white due to a lack of carotenoid accumulation. The carotenoid content in the peel and flesh of LYQ was approximately 68 μg g(-1) and 13 μg g(-1) fresh weight (FW), respectively, and for BS 19 μg g(-1) and 0.27 μg g(-1) FW. The mRNA levels of 15 carotenogenesis-related genes were analysed during fruit development and ripening. After the breaker stage (S4), the mRNA levels of phytoene synthase 1 (PSY1) and chromoplast-specific lycopene β-cyclase (CYCB) were higher in the peel, and CYCB and β-carotene hydroxylase (BCH) mRNAs were higher in the flesh of LYQ, compared with BS. Plastid morphogenesis during fruit ripening was also studied. The ultrastructure of plastids in the peel of BS changed less than in LYQ during fruit development. Two different chromoplast shapes were observed in the cells of LYQ peel and flesh at the fully ripe stage. Carotenoids were incorporated in the globules in chromoplasts of LYQ and BS peel but were in a crystalline form in the chromoplasts of LYQ flesh. However, no chromoplast structure was found in the cells of fully ripe BS fruit flesh. The mRNA level of plastid lipid-associated protein (PAP) in the peel and flesh of LYQ was over five times higher than in BS peel and flesh. In conclusion, the lower carotenoid content in BS fruit was associated with the lower mRNA levels of PSY1, CYCB, and BCH; however, the failure to develop normal chromoplasts in BS flesh is the most convincing explanation for the lack of carotenoid accumulation. The expression of PAP was well correlated with chromoplast numbers and carotenoid accumulation, suggesting its possible role in chromoplast biogenesis or interconversion of loquat fruit.  相似文献   

11.
12.
Plant cells synthesize a myriad of isoprenoid compounds in different subcellular compartments, which include the plastid, the mitochondria, and the endoplasmic reticulum cytosol. To start the study of the regulation of these parallel pathways, we used pepper (Capsicum annuum) fruit as a model. Using different isoprenoid biosynthetic gene probes from cloned cDNAs, we showed that only genes encoding the plastid enzymes (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and capasanthin-capsorubin synthase) are specifically triggered during the normal period of development, at the ripening stage. This pattern of expression can be mimicked and precociously induced by a simple wounding stress. Concerning the cytosol-located enzymes, we observed that the expression of the gene encoding farnesyl pyrophosphate synthase is constitutive, whereas that of farnesyl pyrophosphate cyclase (5-epi-aristolochene synthase) is undetectable during the normal development of the fruit. The expression of these later genes are, however, only selectively triggered after elicitor treatment. The results provide evidence for developmental control of isoprenoid biosynthesis occurring in plastids and that cytoplasmic isoprenoid biosynthesis is regulated, in part, by environmental signals.  相似文献   

13.
14.
15.
Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimize the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids.  相似文献   

16.
17.
18.

Background and Aims

There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase.

Methods

Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices.

Key results

At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts.

Conclusions

These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.  相似文献   

19.
By using green fluorescent protein targeted to the plastid organelle in tomato (Lycopersicon esculentum Mill.), the morphology of plastids and their associated stromules in epidermal cells and trichomes from stems and petioles and in the chromoplasts of pericarp cells in the tomato fruit has been revealed. A novel characteristic of tomato stromules is the presence of extensive bead-like structures along the stromules that are often observed as free vesicles, distinct from and apparently unconnected to the plastid body. Interconnections between the red pigmented chromoplast bodies are common in fruit pericarp cells suggesting that chromoplasts could form a complex network in this cell type. The potential implications for carotenoid biosynthesis in tomato fruit and for vesicles originating from beaded stromules as a secretory mechanism for plastids in glandular trichomes of tomato is discussed.  相似文献   

20.
Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways.Plastids are developmentally related organelles capable of interconversion among a variety of structurally and biochemically distinct forms in response to both environmental and tissue-specific cues (Whatley, 1978; Thomson and Whatley, 1980). Formation of chromoplasts in many fruits is one striking example of this plasticity. Heavily pigmented, photosynthetically inactive chromoplasts frequently develop from chloroplasts during ripening. This conversion involves dramatic changes in the organization and composition of the internal plastid compartment, which include the loss of proteins involved in carbon fixation in the stroma and replacement with chromoplast-specific proteins, the breakdown of the photosynthetic thylakoid membranes and loss of proteins involved in light capture and electron transfer, and, in some cases, the formation of new membranes (Spurr and Harris, 1968; Camara and Brangeon, 1981; Piechulla et al., 1987; Kuntz et al., 1989).Chromoplast formation is an active rather than simply a degradative process. New proteins, specific to or enhanced in chromoplasts, are synthesized and compartmentalized in the plastid (Camara et al., 1995; Price et al., 1995). Most chromoplast proteins are predicted to be nuclear encoded, translated on cytoplasmic ribosomes, and posttranslationally imported into the plastid, as are nuclear-encoded chloroplast proteins. Import of chloroplast proteins occurs via a general import machinery that appears to mediate translocation of most or all proteins that are delivered to the chloroplast stroma, either as a final destination or as an intermediate location (Cline and Henry, 1996; Robinson and Mant, 1997; Schnell, 1998). Proteins are targeted to the general import pathway by an N-terminal extension that is cleaved upon import, resulting in the appearance of a processed protein of reduced Mr. Presumably, the import of proteins into chromoplasts is accomplished by the same machinery that is responsible for import of proteins into chloroplasts, although this has never been directly examined.In some chromoplasts an extensive set of internal membranes accumulates, replacing the thylakoids. For example, in the fibrillar-type chromoplast of bell pepper (Capsicum annuum), the photosynthetic membranes are replaced by membranous sheets and vesicles in addition to the carotenoid-rich plastoglobules and fibrils (Spurr and Harris, 1968; Laborde and Spurr, 1973; Camara and Brangeon, 1981; Deruere et al., 1994). The often extensive internal membranes are the site of synthesis of keto-xanthophylls, which constitute the major carotenoids of red fruit (Bouvier et al., 1994).Our interests are in the biogenesis of the internal membranes of plastids, in particular the proteins that are integral to the bilayer, as well as those located in the luminal compartment formed by the bilayer. In chloroplasts, proteins destined for the thylakoid membrane or lumen are routed from the stroma into the thylakoid membrane and lumen by one of at least four distinct mechanisms: the ΔpH, chloroplast SRP, thylakoid Sec pathways, and an apparently spontaneous insertion mechanism (for review, see Cline and Henry, 1996; Robinson and Mant, 1997; Schnell, 1998). In view of the extensive internal membrane system of bell pepper chromoplasts, one would expect the presence of proteins and accompanying translocation machinery in these membranes. However, no chromoplast-specific proteins have been conclusively demonstrated to be either integral or luminal to these membranes.One protein, Pftf (plastid fusion/translocation factor), predicted to be membrane anchored by sequence analysis, has been purified from the stromal compartment of pepper chromoplasts (Hugueney et al., 1995). This raised the possibility that mature chromoplasts lack the ability to localize proteins into/across internal membranes. To address this question we developed a method for isolating protein import-competent chromoplasts from bell peppers. Immunoblotting confirmed that these chromoplasts contain known translocation machinery components. Chromoplasts were assayed in vitro for their ability to import and localize passenger proteins from the three known protein-machinery-dependent thylakoid-targeting pathways. We found mature chromoplasts to be capable of membrane targeting of proteins that utilize the thylakoidal Sec and ΔpH pathways but not capable of inserting a membrane protein, LHCP, which utilizes the chloroplast SRP pathway. Pftf was inserted into the membranes of these chromoplasts in a manner similar to that observed in chloroplasts, and resident Pftf was also found to be integrally associated with chromoplast membranes. The precise role of these pathways in the formation of bell pepper chromoplasts remains to be fully elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号