首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Farnesol, a sesquiterpene alcohol, potentiates the activity of β-lactam antibiotics against antibiotic-resistant bacteria. We document that farnesol and two synthetic derivatives (compounds 2 and 6) have poor antibacterial activities of their own, but they potentiate the activities of ampicillin and oxacillin against Staphylococcus aureus strains (including methicillin-resistant S. aureus). These compounds attenuate the rate of growth of bacteria, which has to be taken into account in assessment of the potentiation effect.  相似文献   

2.
A simple and rapid slide latex agglutination assay was developed to detect penicillin-binding protein 2′ (PBP2′) from isolates of staphylococi. PBP2′ present in the membranes of methicillin-resistant Staphylococcus aureus (MRSA) or methicillin-resistant coagulase negative staphylococci (MRCNS) was rapidly extracted by alkaline treatment and, by combining with a slide agglutination reaction using latex particles sensitized with monoclonal antibodies raised against it, PBP2′ could be detected from a single loopful of cells taken from agar plates not containing beta-lactum antibiotics within 15 min. In a study of clinical isolates previously characterized as either MRSA or methicillin-susceptible Staphylococcus aureus (MSSA) by antibiotic susceptibility testing, 231 specimens of 232 MRSA were PBP2′ positive by latex agglutination, and the 87 specimens of MSSA were all negative. One specimen identified as MRSA by susceptibility testing but PBP2′ negative by latex agglutination was confirmed as mecA gene negative by PCR. This simple and rapid slide latex reagent should be useful in clinical diagnostics.  相似文献   

3.
We have recently found a factor (Factor T) in aged mixtures of tungstate and phosphate which greatly enhances the antibacterial effects of β-lactams on methicillin-resistant strains of staphylococcal species such as methicillin-resistant Staphylococcus aureus (MRSA), but shows only weak effects on methicillin-susceptible S. aureus and bacterial strains other than staphylococci. Factor T alone did not strongly inhibit cell metabolism and bacterial growth unless an excess amount was added. When Factor T was added to the culture medium beforehand, the growth of MRSA cells was rapidly suppressed just after addition of oxacillin (MPIPC). However, the growth of the cells was inhibited gradually when these two reagents were added in reverse order. For full expression of the enhancing effect, it seemed necessary for cells of MRSA strains to be incubated with Factor T for at least 2–3 hr. When the cells were washed after being sensitized by incubating them for 5 hr with Factor T, it took approximately 1 hr for the cells to recover their resistance to MPIPC. Factor T reduced the amount of penicillin-binding protein-2′ (PBP 2′), and thus sensitized the MRSA strains to β-lactams.  相似文献   

4.
5.
6.
We found that the three high molecular weight penicillin-binding proteins (PBP) 1, 2, and 3 of Staphylococcus aureus could be blocked by the β-lactam antibiotics imipenem, cefotaxime, and mecillinam, respectively. The inhibition of any of these PBPs was not sufficient for an antibacterial effect. Even the simultaneous blocking of PBPs 2 and 3, previously supposed to be the lethal targets of β-lactam antibiotics, did not induce bacteriolysis, nor did the combined saturation of PBPs 2, 3, and 4. Instead, PBP 1 seems to play a key role, because on one hand the combined inhibition of PBP 1 with any of the other high molecular weight PBPs led to bacteriolysis, on the other hand, only inhibition of PBP 1 led to a loss of the ‘splitting system’ of the staphylococcal cross wall, similar to that observed in penicillin G-treated cells earlier.  相似文献   

7.
The aim of this study was to develop a methicillin-resistant Staphylococcus aureus (MRSA) detection method based on the melting temperature analysis profiling of S. aureus clinical isolates from three different hospitals in Malaysia. Simplex and duplex real-time PCR assay was used for the simultaneous detection of nuc (species-specific) and mecA (methicillin-resistance) genes in a single SYBR Green I real-time PCR tube assay. Evaluations were based on the melting temperature (T m) analysis of the amplicons using 23 S. aureus clinical isolates including three ATCC S. aureus standard strains. Real-time PCR amplification products with melting peaks at 78.39 ± 0.4°C and 74.41 ± 0.6°C were detected for nuc and mecA genes, respectively. Each real-time PCR assay was completed within two hours. This rapid genotypic method is useful for the detection of resistant determinant (mecA) and identification of S. aureus (nuc) clinical isolates, thus benefiting patient therapy in hospitals.  相似文献   

8.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infections with multi-drug resistance needs effective and alternative control strategies. In this study we investigated the adjuvant effect of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid (7,10-EODA) against multidrug-resistant S. aureus (MDRSA) strain 01ST001 by disc diffusion, checker board and time kill assays. Further the membrane targeting action of 7,10-EODA was investigated by spectroscopic and confocal microscopic studies. 7,10-EODA exerted synergistic activity along with β-lactam antibiotics against all clinical MRSA strains, with a mean fractional inhibitory concentration index below 0.5. In time-kill kinetic study, combination of 7,10-EODA with oxacillin, ampicillin, and penicillin resulted in 3.8–4.2 log10 reduction in the viable counts of MDRSA 01ST001. Further, 7,10-EODA dose dependently altered the membrane integrity (p < 0.001) and increased the binding of fluorescent analog of penicillin, Bocillin-FL to the MDRSA cells. The membrane action of 7,10-EODA further facilitated the uptake of several other antibiotics in MDRSA. The results of the present study suggested that 7,10-EODA could be a novel antibiotic adjuvant, especially useful in repurposing β-lactam antibiotics against multidrug-resistant MRSA.  相似文献   

9.
The aim of this study is to compare methicillin-resistant Staphylococcus aureus (MRSA) detection methods and to generate antibiogram profile of S. aureus clinical isolates from two teaching hospitals in Malaysia including three reference isolates from American Type Culture Collection (ATCC). The mecA/nuc gene PCR amplification, spot inoculation test and oxacillin disc diffusion test were applied to compare its MRSA detection abilities. No disagreement between the three methods was observed. From 29 bacterial isolates (including the ATCC strains) tested, 19 isolates were confirmed as S. aureus with 14 isolates exhibiting multidrug-resistance. All isolates are still susceptible to vancomycin as indicated by the E-test result. Current biochemical tests are comparable with the molecular detection method for MRSA used in this study while multidrug-resistance traits are present in both MRSA and MSSA clinical isolates. Presently, mupirocin seems to be the best alternative for vancomycin against multidrug-resistant S. aureus infections in Malaysia. Susceptibility profile of 19 S. aureus isolates acquired from two teaching hospitals and ATCC towards 16 selected antibiotics was analyzed and an antibiogram was generated. Findings also indicated resistance against many of the available antibiotics and thus an urgent need to search for alternative antibiotics.  相似文献   

10.
11.
Aims: To measure antibacterial activity of the semi-synthetic flavonoid 3-O-octanoyl-(–)-epicatechin and investigate the mechanism of action. Methods and Results: MICs determined by the broth microdilution method were 50 μg ml−1 for β-lactam sensitive and resistant Staphylococcus aureus, and 100 μg ml−1 for vancomycin sensitive and resistant enterococci. In time-kill studies, 100 μg ml−1 3-O-octanoyl-(–)-epicatechin reduced colony forming unit numbers of antibiotic sensitive and methicillin-resistant Staph. aureus below detectable levels within 120 min. Bacterial aggregation was not observed when cells exposed to 3-O-octanoyl-(–)-epicatechin were examined by light microscopy. It was also shown that 50 μg ml−1 3-O-octanoyl-(–)-epicatechin is capable of reducing colony forming unit numbers of high cell density Staph. aureus populations by 80-fold within 60 min incubation, and inducing leakage of 50% of their internal potassium within just 10 min. Conclusions: 3-O-Octanoyl-(–)-epicatechin is active against Gram-positive bacteria, has bactericidal activity against both antibiotic sensitive and resistant strains, and is likely to exert its primary antibacterial effect by damaging the cytoplasmic membrane. Significance and Impact of the Study: 3-O-Octanoyl-(–)-epicatechin has significant antibacterial activity and additional structural modification and/or formulation studies may allow this to be potentiated.  相似文献   

12.
Staphylococcus pseudintermedius is a commensal organism of companion animals that is a significant source of opportunistic infections in dogs. With the emergence of clinical isolates of S. pseudintermedius (chiefly methicillin-resistant S. pseudintermedius (MRSP)) exhibiting increased resistance to nearly all antibiotic classes, new antimicrobials and therapeutic strategies are urgently needed. Thiazole compounds have been previously shown to possess potent antibacterial activity against multidrug-resistant strains of Staphylococcus aureus of human and animal concern. Given the genetic similarity between S. aureus and S. pseudintermedius, this study explores the potential use of thiazole compounds as novel antibacterial agents against methicillin-sensitive S. pseudintermedius (MSSP) and MRSP. A broth microdilution assay confirmed these compounds exhibit potent bactericidal activity (at sub-microgram/mL concentrations) against both MSSA and MRSP clinical isolates while the MTS assay confirmed three compounds (at 10 μg/mL) were not toxic to mammalian cells. A time-kill assay revealed two derivatives rapidly kill MRSP within two hours. However, this rapid bactericidal activity was not due to disruption of the bacterial cell membrane indicating an alternative mechanism of action for these compounds against MRSP. A multi-step resistance selection analysis revealed compounds 4 and 5 exhibited a modest (two-fold) shift in activity over ten passages. Furthermore, all six compounds (at a subinihibitory concentration) demonstrated the ability to re-sensitize MRSP to oxacillin, indicating these compounds have potential use for extending the therapeutic utility of β-lactam antibiotics against MRSP. Metabolic stability analysis with dog liver microsomes revealed compound 3 exhibited an improved physicochemical profile compared to the lead compound. In addition to this, all six thiazole compounds possessed a long post-antibiotic effect (at least 8 hours) against MRSP. Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents.  相似文献   

13.
Infections caused by methicillin-resistant S. aureus strains are mainly associated with a hospital setting. However, nowadays, the MRSA infections of non-hospitalized patients are observed more frequently. In order to distinguish them from hospital-associated methicillin-resistant S. aureus (HA-MRSA) strains, given them the name of community-associated methicillin-resistant S. aureus (CA-MRSA). CA-MRSA strains most commonly cause skin infections, but may lead to more severe diseases, and consequently the patient’s death. The molecular markers of CA-MRSA strains are the presence of accessory gene regulator (agr) of group I or III, staphylococcal cassette chromosome mec (SCCmec) type IV, V or VII and genes encoding for Panton–Valentine leukocidin (PVL). In addition, CA-MRSA strains show resistance to β-lactam antibiotics. Studies on the genetic elements of CA-MRSA strains have a key role in the unambiguous identification of strains, monitoring of infections, improving the treatment, work on new antimicrobial agents and understanding the evolution of these pathogens.  相似文献   

14.
Meat samples from sheep, bovine, camel and poultry were collected from Amman area and were processed and tested for the presence of methicillin (oxacillin) resistantStaphylococcus aureus (MRSA). Identity ofS. aureus was ensured by Gram-staining and a battery of biochemical tests. From 1260 meat samples, 157S. aureus positive isolates were identified. Of the 157 isolates, 30 were resistant to methicillin levels greater than 2 μg/ml and only 15 weremecA-positive MRSA originating mainly from sheep and chicken. Subjecting themecA-positive MRSA to antibiotic susceptibility testing revealed that all isolates were resistant to β-lactam antibiotics (ampicillin, penicillin, and oxacillin) and were sensitive to vancomycin, trimethoprim, chloramphenicol and cephalothin. Randomamplified polymorphic DNA (RAPD) analysis ofmecA-positive animal isolates generated six different patterns. Comparing these results with results of isolates of human origin of our laboratory there is some molecular epidemiological relatedness between both and could be a possible source of infections through consuming contaminated meat products, direct contact or meat processing.  相似文献   

15.
A bacterial strain with a high level of antimicrobial activity was isolated from soil and identified as Bacillus megaterium. Production of antibiotics by nine strains of this species from the collection of the State Research Institute for Genetics and Selection of Industrial Microorganisms was investigated. In submerged cultures, nine out of ten B. megaterium strains were found to produce antibacterial antibiotics differing in their spectra of action. Physicochemical characteristics of five compounds were described. Three of them belonged to peptide antibiotics. All five compounds were active against the methicillin-resistant strain Staphylococcus aureus INA 00761. Three of them were shown to be the previously undescribed compounds. Antibiotics produced by various B. megaterium strains were also active against the Leuconostoc mesenteroides VKPM B-4177 strain resistant to glycopeptide antibiotics and against gram-negative bacteria Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922.  相似文献   

16.
Although doxycycline is active against Burkholderia pseudomallei and has been used in the eradication stage of melioidosis therapy, it is not regularly used during the initial intensive phase. In order to assess its potential use in intensive phase therapy, we investigated in vitro pharmacodynamic activity of doxycycline and β-lactams alone and in combination against four Malaysian strains of B. pseudomallei. Using a checkerboard assay, the combinations of doxycycline and imipenem, doxycycline and ceftazidime, and doxycycline and amoxicillin–clavulanate tested against four strains showed indifferent effects with summation fractional inhibitory concentration values ranging from 0.62 to 2.12. Time-kill experiments also indicated that the combinations of doxycycline/β-lactam antibiotics against four tested strains did not fulfil synergy criteria, in which all combinations showed indifferent effects with ? 1.36 to 1.26-log CFU/mL compared to the most active monotherapy regimen in each combination. No re-growth of bacteria was detected after the early killing in doxycycline/β-lactam combination regimens compared to β-lactam monotherapy regimens, in which 9 out of 10 were associated with re-growth of bacteria. As no synergistic activity was observed, this in vitro study showed that doxycycline offers no additional benefit to be used in combination with β-lactams in the intensive phase of therapy.  相似文献   

17.

Background

Staphylococcus aureus can cause severe infections, including bacteremia and sepsis. The spread of methicillin-resistant Staphylococcus aureus (MRSA) highlights the need for novel treatment options. Sodium new houttuyfonate (SNH) is an analogue of houttuynin, the main antibacterial ingredient of Houttuynia cordata Thunb. The aim of this study was to evaluate in vitro activity of SNH and its potential for synergy with antibiotics against hospital-associated MRSA.

Methodology

A total of 103 MRSA clinical isolates recovered in two hospitals in Beijing were evaluated for susceptibility to SNH, oxacillin, cephalothin, meropenem, vancomycin, levofloxacin, minocycline, netilmicin, and trimethoprim/sulfamethoxazole by broth microdilution. Ten isolates were evaluated for potential for synergy between SNH and the antibiotics above by checkerboard assay. Time-kill analysis was performed in three isolates to characterize the kill kinetics of SNH alone and in combination with the antibiotics that engendered synergy in checkerboard assays. Besides, two reference strains were included in all assays.

Principal Findings

SNH inhibited all test strains with minimum inhibitory concentrations (MICs) ranging from 16 to 64 µg/mL in susceptibility tests, and displayed inhibition to bacterial growth in concentration-dependent manner in time-kill analysis. In synergy studies, the combinations of SNH-oxacillin, SNH-cephalothin, SNH-meropenem and SNH-netilmicin showed synergistic effects against 12 MRSA strains with median fractional inhibitory concentration (FIC) indices of 0.38, 0.38, 0.25 and 0.38 in checkerboard assays. In time-kill analysis, SNH at 1/2 MIC in combination with oxacillin at 1/128 to 1/64 MIC or netilmicin at 1/8 to 1/2 MIC decreased the viable colonies by ≥2log10 CFU/mL.

Conclusions/Significance

SNH demonstrated in vitro antibacterial activity against 103 hospital-associated MRSA isolates. Combinations of sub-MIC levels of SNH and oxacillin or netilmicin significantly improved the in vitro antibacterial activity against MRSA compared with either drug alone. The SNH-based combinations showed promise in combating MRSA.  相似文献   

18.
19.
A triplex-PCR assay was developed and evaluated for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) recovered from various biological samples of pig. Three sets of primers were designed to target mecA, 16S rRNA and nuc genes of MRSA. The specific amplification generated three bands on agarose gel, with sizes 280 bp for mecA, 654 bp for 16S rRNA and 481 bp for nuc, respectively. A potential advantage of the PCR assay is its sensitivity with a detection limit of 102 CFU per ml of bacteria. In all, 79 MRSA isolates recovered from various samples of pigs were subjected to the amplification by the triplex-PCR assay and all the isolates yielded three bands corresponding to the three genes under this study. No false-positive amplification was observed, indicating the high specificity of the developed triplex-PCR assay. This assay will be a useful and powerful method for differentiation of MRSA from methicillin-sensitive S. aureus, coagulase-negative methicillin-resistant staphylococci and coagulase-negative methicillin-sensitive staphylococci.  相似文献   

20.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号