首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models of the dynamics of large herbivore populations represent density feedbacks on the population growth rate either directly or indirectly through interactions with vegetation resources. Neither approach incorporates the spatial heterogeneity that is an essential feature of most natural environments, and modifies the population dynamics generated. This is especially true for large herbivores exploiting food resources that are rooted in space but temporally variable in quantity and quality both seasonally and annually. In this review I explore how environmental variation at different spatiotemporal scales influences the abundance of herbivore populations controlled via resources, predators or social mechanisms. Changes in abundance can be spatially disparate and dependent on different resource components at different stages of the seasonal cycle, including buffer resources restricting population crashes in extremely adverse years. GPS telemetry enables movement responses generating spatial patterns to be documented in fine spatiotemporal detail, including migration and dispersal. Models incorporating spatial heterogeneity either implicitly or explicitly are outlined, exemplifying how herbivores cope with temporal variability by exploiting spatial variability in resources and conditions. Global human dominance is generating widened climatic variation while opportunities for herbivore movements are becoming constricted. Theoretical population ecologists need to shift their focus from the workings of demographic structure towards effects of changing environmental contexts, in order to project the likely trajectories of large herbivore populations through the Anthropocene.  相似文献   

2.
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature‐dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature‐dependent processes that are common to all consumer–resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.  相似文献   

3.
Facing herbivory as you grow up: the ontogeny of resistance in plants   总被引:1,自引:0,他引:1  
As plants develop from seeds to seedlings, juveniles and mature stages, their ontogeny can constrain the expression of resistance to herbivore damage. Nevertheless, ecological and evolutionary theories regarding interactions between plants, herbivores and their natural enemies are largely based on observations and experiments conducted at a single ontogenetic stage. Owing to resource allocation and architectural constraints in plants, and the influence of herbivore foraging behavior, resistance to herbivores is likely to change during plant development. We propose that such changes are likely to occur in a non-linear fashion and suggest that the role of ontogeny should be incorporated as an important factor in new syntheses of plant defense theory.  相似文献   

4.
Shade, in ecological sense, is not merely a lack of light, but a multi-faceted phenomenon that creates new and complex settings for community and ecosystem dynamics. Tolerating shade therefore affects plants’ ability to cope with other stressors, and also shape its interactions with surrounding organisms. The aim of this broad review was to map our current knowledge about how shade affects plants, plant communities and ecosystems – to gather together knowledge of what we know, but also to point out what we do not yet know. This review covers the following topics: the nature of shade, and ecological and physiological complexities related to growing under a canopy; plants’ capability of tolerating other stress factors while living under a shade – resource trade-offs and polytolerance of abiotic stress; ontogenetic effects of shade tolerance; coexistence patterns under the canopy – how shade determines the forest structure and diversity; shade-induced abiotic dynamics in understorey vegetation, including changing patterns of irradiance, temperature and humidity under the canopy; shade-driven plant–plant and plant–animal interactions – how shade mediates facilitation and stress, and how it creates differentiated environment for different herbivores and pollinators, including the role of volatile organic compounds. We also discuss the ways how vegetation in understorey environments will be affected by climate change, as shade might play a significant role in mitigating negative effects of climate change. Our review shows that living under a shade affects biotic and abiotic stress tolerance of plants, it also influences the outcomes of both symbiotic and competitive plant–plant and plant–animal interactions in a complex and dynamic manner. The current knowledge of shade-related mechanisms is rather ample, however there is much room for progress in integrating different implications of the multifaceted nature of shade into consistent and integral understanding how communities and ecosystems function.  相似文献   

5.
Plant-insect interactions are key model systems to assess how some species affect the distribution, the abundance, and the evolution of others. Tree reproductive structures represent a critical resource for many insect species, which can be likely drivers of demography, spatial distribution, and trait diversification of plants. In this review, we present the ecological implications of predispersal herbivory on tree reproductive structures by insects (PIHR) in forest ecosystems. Both insect's and tree's perspectives are addressed with an emphasis on how spatiotemporal variation and unpredictability in seed availability can shape such particular plant-animal interactions. Reproductive structure insects show strong trophic specialization and guild diversification. Insects evolved host selection and spatiotemporal dispersal strategies in response to variable and unpredictable abundance of reproductive structures in both space and time. If PIHR patterns have been well documented in numerous systems, evidences of the subsequent demographic and evolutionary impacts on tree populations are still constrained by time-scale challenges of experimenting on such long-lived organisms, and modeling approaches of tree dynamics rarely consider PIHR when including biotic interactions in their processes. We suggest that spatially explicit and mechanistic approaches of the interactions between individual tree fecundity and in sect dynamics will clarify predictions of the demogenetic implications of PIHR in tree populations. In a global change context, further experimental and theoretical contributions to the likelihood of life-cycle disruptions between plants and their specialized herbivores, and to how these changes may gen erate novel dynamic patterns in each partner of the interaction are increasingly critical.  相似文献   

6.
Background and Aims Ontogenetic changes in anti-herbivore defences are common and result from variation in resource availability and herbivore damage throughout plant development. However, little is known about the simultaneous changes of multiple defences across the entire development of plants, and how such changes affect plant damage in the field. The aim of this study was to assess if changes in the major types of plant resistance and tolerance can explain natural herbivore damage throughout plant ontogeny.Methods An assessment was made of how six defensive traits, including physical, chemical and biotic resistance, simultaneously change across the major transitions of plant development, from seedlings to reproductive stages of Turnera velutina growing in the greenhouse. In addition, an experiment was performed to assess how plant tolerance to artificial damage to leaves changed throughout ontogeny. Finally, leaf damage by herbivores was evaluated in a natural population.Key Results The observed ontogenetic trajectories of all defences were significantly different, sometimes showing opposite directions of change. Whereas trichome density, leaf toughness, extrafloral nectary abundance and nectar production increased, hydrogen cyanide and compensatory responses decreased throughout plant development, from seedlings to reproductive plants. Only water content was higher at the intermediate juvenile ontogenetic stages. Surveys in a natural population over 3 years showed that herbivores consumed more tissue from juvenile plants than from younger seedlings or older reproductive plants. This is consistent with the fact that juvenile plants were the least defended stage.Conclusions The results suggest that defensive trajectories are a mixed result of predictions by the Optimal Defence Theory and the Growth–Differentiation Balance Hypothesis. The study emphasizes the importance of incorporating multiple defences and plant ontogeny into further studies for a more comprehensive understanding of plant defence evolution.  相似文献   

7.
Eleven populations of the monocarpic species, Crepis tectorurn (Asteraceae) in South Sweden differed in the extent to which different leaf characters changed during plant ontogeny. Multivariate analyses on sequences of leaf samples collected from greenhouse-grown plants of different ages revealed a group structure of populations that was different from that revealed by analysing variation in leaves from adult plants. Ontogenetic data suggested that populations within a weed and an alvar ecotype constituted more natural groups than combinations of populations from both eco-types that had similar leaves at adult stages, supporting the hypothesis that these ecotypes may have different migration histories in this area. Variation among the populations in leaf characteristics was partly due to differences that were present at all ontogenetic stages and partly due to variation in the rate of development of some of the leaf characters during plant ontogeny. Plants in some populations appeared to have more 'juvenile' leaves at adult stages than plants in other populations, at least in some characters.  相似文献   

8.
Herbivorous insects exploit many different plants and plant parts and often adopt different feeding strategies throughout their life cycle. The conceptual framework for investigating insect–plant interactions relies heavily on explanations invoking plant chemistry, neglecting a suite of competing and interacting pressures that may also limit herbivory. In the present paper, the methods by which ontogeny, feeding strategies and morphological characters inhibit herbivory by mandibulate holometabolous insects are examined. The emphasis on mechanical disruption of plant cells in the insect digestive strategy changes the relative importance of plant ‘defences’, increasing the importance of leaf structure in inhibiting herbivory. Coupled with the implications of substantial morphological and behavioural changes in ontogeny, herbivores adopt a range of approaches to herbivory that are independent of plant chemistry alone. Many insect herbivores exhibit substantial ontogenetic character displacement in mandibular morphology. This is tightly correlated with changes in feeding strategy, with changes to the cutting edges of mandibles increasing the efficiency of feeding. The changes in feeding strategy are also characterized by changes in feeding behaviour, with many larvae feeding gregariously in early instars. Non‐nutritive hypotheses considering the importance of natural enemies, shelter‐building and thermoregulation may also be invoked to explain the ontogenetic consequences of changes to feeding behaviour. There is a need to integrate these factors into a framework considering the gamut of potential explanations of insect herbivory, recognizing that ontogenetic constraints are not only viable explanations but a logical starting point. The interrelations between ontogeny, size, morphology and behaviour highlight the complexity of insect–plant relationships. Given the many methods used by insect herbivores to overcome the challenges of consuming foliage, the need for species‐specific and stage‐ specific research investigating ontogeny and host use by insect herbivores is critical for developing general theories of insect–plant interactions.  相似文献   

9.
Bottom‐up and top‐down impacts on herbivores can be influenced by plant productivity, structural complexity, vigor and size. Although these traits are likely to vary with plant development, the influence of plant ontogeny on the relative importance of plant quality (i.e. bottom‐up forces) and predation risk (i.e. top‐down forces) has been the focus of little previous investigation. We evaluated the role of plant ontogeny for the relative importance of bottom‐up and top‐down forces on insect herbivore abundance, species richness, and species diversity attacking the tropical tree Casearia nitida. We also quantified the cascading effects on herbivory, growth and reproduction of this plant species. Plant quality traits (nitrogen and phenolic compounds) were assessed in saplings and reproductive trees. Bottom‐up forces were manipulated by fertilizing plants from both ontogenetic stages. Top‐down forces were manipulated by excluding insectivorous birds from saplings and reproductive trees. Plant ontogeny influenced foliage quality in terms of total phenolics, which were in greater concentration in reproductive trees than in saplings; however, it did not influence bottom‐up forces as modified by fertilization. Bird exclusion increased herbivore density with the same magnitude on both stages. Ontogeny influenced species diversity, which was greater in reproductive trees than in saplings, and also influenced treatment impacts on species richness and diversity. Although top‐down forces increased herbivory equally on plants of each ontogenetic stage, the two stages showed different overcompensation responses to increased damage: caged saplings produced greater leaf biomass than non‐caged saplings, whereas caged trees increased in height proportionally more than non‐caged trees. In sum, plant ontogeny influenced the impact of bird predation on herbivore density, species richness, and species diversity, and the growth variables affected by increased damage in caged plants. We suggest that plant ontogeny can contribute to some extent to the influence of plant quality and the third trophic level on herbivores in this system.  相似文献   

10.
Ecologists are increasingly aware of the interplay between evolutionary history and ecological processes in shaping current species interaction patterns. The inclusion of phylogenetic relationships in studies of species interaction networks has shown that closely related species commonly interact with sets of similar species. Notably, the degree of phylogenetic conservatism in antagonistic ecological interactions is frequently stronger among species at lower trophic levels than among those at higher trophic levels. One hypothesis that accounts for this asymmetry is that competition among consumer species promotes resource partitioning and offsets the maintenance of dietary similarity by phylogenetic inertia. Here, we used a regional plant–herbivore network comprised of Asteraceae species and flower‐head endophagous insects to evaluate how the strength of phylogenetic conservatism in species interactions differs between the two trophic levels. We also addressed whether the asymmetry in the strength of the phylogenetic signal between plants and animals depends on the overall degree of relatedness among the herbivores. We show that, beyond the previously reported compositional similarity, closely related species also share a greater proportion of counterpart phylogenetic history, both for resource and consumer species. Comparison of the patterns found in the entire network with those found in subnetworks composed of more phylogenetically restricted groups of herbivores provides evidence that resource partitioning occurs mostly at deeper phylogenetic levels, so that a positive phylogenetic signal in antagonist similarity is detectable even between closely related consumers in monophyletic subnetworks. The asymmetry in signal strength between trophic levels is most apparent in the way network modules reflect resource phylogeny, both for the entire network and for subnetworks. Taken together, these results suggest that evolutionary processes, such as phylogenetic conservatism and independent colonization history of the insect groups may be the main forces generating the phylogenetic structure observed in this particular plant–herbivore network system.  相似文献   

11.
Kaplan I  Lynch ME  Dively GP  Denno RF 《Oecologia》2007,152(4):665-675
Many herbivores elicit biochemical, physiological, or morphological changes in their host plants that render them more resistant to co-occurring herbivores. Yet, despite the large number of studies that investigate how induced resistance affects herbivore preference and performance, very few have simultaneously explored the cascading effects of induction on higher trophic levels and consequences for prey suppression. In our study system, early-season herbivory by leafhoppers elevated plant resistance to subsequent attack by chrysomelid beetles sharing the same host plant. Notably, beetles feeding on leafhopper-damaged plants incurred developmental penalties (e.g., prolonged time in early larval instars) that rendered them more susceptible to predation by natural enemies. As a result, the combined bottom-up effect of leafhopper-induced resistance and the top-down effect of enhanced predation resulted in the synergistic suppression of beetle populations. These results emphasize that higher trophic level dynamics should be considered in conjunction with induced resistance to better understand how plants mediate interspecific interactions in phytophagous insect communities.  相似文献   

12.
  1. Shifts in the fundamental and realised niche of individuals during their ontogeny are ubiquitous in nature, but we know little about what aspects of the niche change and how these changes vary across species within communities. However, this knowledge is essential to predict the dynamics of populations and communities and how they respond to environmental change.
  2. Here I introduce a range of metrics to describe different aspects of shifts in the realised trophic niche of individuals based on stable isotopes. Applying this multi-variate approach to 2,272 individuals from 13 taxonomic and functional distinct species (Amphibia, Hemiptera, Coleoptera, Odonata) sampled in natural pond communities allowed me to: (1) describe and quantify the diversity of trophic niche shift patterns over ontogeny in multi-dimensional space, and (2) identify what aspects of ontogenetic shifts vary across taxa, and functional groups.
  3. Results revealed that species can differ substantially in which aspects of the trophic niche change and how they change over ontogeny. Interestingly, patterns of ontogenetic niche shifts grouped in distinct taxonomic clusters in multi-variate space, including two distinct groups of predators (Hemiptera versus Odonata). Given the differences in traits (especially feeding mode) across groups, this suggests that differences in ontogenetic niche shifts across species could at least partially be explained by variation in traits and functional roles of species.
  4. These results emphasise the importance of a multivariate approach to capture the large diversity of trophic niche shifts patterns possible in natural communities and suggest that differences in ontogenetic niche shifts follow general patterns.
  相似文献   

13.
Trophic cascades – the indirect effect of predators on non‐adjacent lower trophic levels – are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences trophic cascade strength in a terrestrial tri‐trophic system. We found that the occurrence and strength of the trophic cascade are strongly influenced by herbivores’ lineage and host‐plant specialization but are not associated with density‐dependent effects mediated by the growth rate of herbivore populations. Our findings stress the importance of intraspecific heterogeneities and evolutionary specialization as drivers of trophic cascade strength and underline that intraspecific variation should not be overlooked to decipher the joint influence of evolutionary and ecological factors on the functioning of multi‐trophic interactions.  相似文献   

14.
Jeremy W. Fox 《Oikos》2003,102(3):630-640
The relationship between plant diversity and total plant biomass is of great current interest in ecology. Niche differences among plants are widely thought to promote both plant coexistence, and higher biomass in more diverse polycultures. Using simple mechanistic models, I demonstrate that not all niche differences among plants are equally likely to promote high total biomass in polyculture. In particular, transgressive overyielding (when a polyculture of plants outperforms any monoculture) occurs for a wide range of parameter values when plants coexist in polyculture due to differences in resource use. Transgressive overyielding occurs only for a limited set of parameter values when specialist herbivores mediate plant coexistence, and is impossible when generalist herbivores mediate coexistence. Niche differences among plants promote high biomass in polyculture only when plants coexist in polyculture at the expense of other trophic levels – that is, by converting into biomass resources that would otherwise be bound in herbivores, or exist in a free state. A major challenge for future work will be to identify the joint consequences of different coexistence mechanisms for plant diversity and ecosystem performance.  相似文献   

15.
Herbivores can be associated with distinct ontogenetic stages of their host in a nonseasonal, directional, and continuous pattern of colonization and extinction of species populations called ontogenetic succession, but the processes behind this pattern are still largely unknown. We used plants of Cryptocarya aschersoniana Mez (Lauraceae) belonging to different ontogenetic stages, to examine how the density of different gall‐inducing insects varies along the ontogeny of the host, and how gall density is influenced by mechanisms associated with host quality (plant height, plant shape, leaf area, specific leaf area, and hypersensitivity), and by mechanisms associated with their natural enemies (parasitoids, pathogens, and predators). In a remnant of Araucaria Forest, located in the São Francisco de Paula National Forest (Brazil), gall density (ind./100 g of leaf ) was obtained for 42 plants of C. aschersoniana divided into three height classes. Two galling species were recorded, showing quite distinct density patterns among height classes of C. aschersoniana. While Hymenoptera gall density decreased almost 50 times from small plants to canopy trees, Hemiptera gall density increased almost 10 times. Path analyses showed that Hymenoptera density was higher in smaller plants, independent of other host traits, while Hemiptera density was higher in plants exhibiting smaller leaves. Natural enemies were not detected in the Hemiptera population, and mortality rates due to predators, parasitoids, and pathogens did not affect Hymenoptera density. Processes associated with plant quality play the main role in generating the observed ontogenetic succession pattern.  相似文献   

16.
Mechanisms that allow for the coexistence of two competing species that share a trophic level can be broadly divided into those that prevent competitive exclusion of one species within a local area, and those that allow for coexistence only at a regional level. While the presence of aphid‐tending ants can change the distribution of aphids among host plants, the role of mutualistic ants has not been fully explored to understand coexistence of multiple aphid species in a community. The tansy plant (Tanacetum vulgare) hosts three common and specialized aphid species, with only one being tended by ants. Often, these aphids species will not coexist on the same plant but will coexist across multiple plant hosts in a field. In this study, we aim to understand how interactions with mutualistic ants and predators affect the coexistence of multiple species of aphid herbivores on tansy. We show that the presence of ants drives community assembly at the level of individual plant, that is, the local community, by favoring one ant‐tended species, Metopeurum fuscoviride, while preying on the untended Macrosiphoniella tanacetaria and, to a lesser extent, Uroleucon tanaceti. Competitive hierarchies without ants were very different from those with ants. At the regional level, multiple tansy plants provide a habitat across which all aphid species can coexist at the larger spatial scale, while being competitively excluded at the local scale. In this case, ant mutualist‐dependent reversal of the competitive hierarchy can drive community dynamics in a plant–aphid system.  相似文献   

17.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

18.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   

19.
Population structures largely affect higher levels of organization (community structure, ecosystem functioning), especially when involving ontogenetic changes in habitat or diet. Along life cycles, partners and interaction type may change: for instance Lepidopterans are herbivores as larvae and pollinators as adults. To understand variations in diet niche from larvae to adults, we model a community of two plant species and one stage‐structured insect species consuming plants as juvenile and pollinating them as adult. We model the coevolution of juvenile and adult diet specialization using adaptive dynamics to investigate when one should expect niche partitioning or niche overlap among life stages. We consider ecological and evolutionary implications for the coexistence of species. As predicted based on indirect effects among stages, we find that juvenile diet evolution increases niche overlap and favours the coexistence of plants, while the evolution of the adult diet decreases niche overlap and reduces plant coexistence, because of positive feedbacks emerging from the mutualistic interaction.  相似文献   

20.
The majority of terrestrial primary production is performed by plants, the ontogenetic growth trends of which significantly influence biomass and carbon dynamics. Here, we present a study of ontogenetic trends in primary (apical) and secondary (stem thickening) growth of plants in Arctic (Svalbard, Norway) and alpine (Krkonoše, Czechia) populations of the black crowberry (Empetrum nigrum), the dominant plant species of certain tundra communities. The environmental conditions in alpine areas are more favourable for plant growth than those in the High Arctic, where temperatures are lower, there is less precipitation and soils are shallower, among other differences. These differences were clearly reflected in significant distinctions in absolute growth rates and shrub age between the populations under study. However, we found almost no divergence in ontogenetic growth trends between the populations (based on ring width measurements made from the base to the top of plants, known as serial sectioning). In both populations, primary and secondary stem base growth decrease over the course of ontogeny whereas secondary stem top growth and basal area increment increase. No significant differences in the slope of the trends were found in either primary or secondary stem base growth. Trends of the growth ratio between basal area increment and primary growth revealed neither absolute nor relative differences between the populations. Ontogenetic trends in the shrubs analysed were surprisingly stable despite the prominently dissimilar environmental conditions. Empetrum plants have adapted to the different environments by altering their absolute growth rate only. This adaptation has probably also resulted in the different longevity of plants constituting the study populations, confirming the theory that slower-growing plants live longer. Primary growth and secondary stem base growth seem to be more basic characteristics of plant growth compared to basal area increment and secondary growth at the apex because the latter two seem to be dependent on the absolute growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号