共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
《Fungal Ecology》2014
An increasing number of ecological studies compare the diversity of microbial taxa along environmental gradients or between imposed treatments. Estimates are often based on analysis-of-variance of taxon-richness inferred from pyrosequencing data. We conducted a reanalysis of three 454-pyrosequencing studies on arbuscular-mycorrhizal-fungal diversity to evaluate the suitability of using the Leinster and Cobbold diversity-indices (LCdis) to assess diversity. We expected that the potential of LCdis to consider phylogenic relationships could resolve problems arising from ambiguous species-delineation in microbial-systems. Our reanalysis showed that comparisons between studies differing considerably in sequencing depth may be risky. Moreover, we show that LCdis not only reproduce the results of analyses of variance but can also resolve issues connected to variation in sequence read number, while additionally representing a less conservative metric of diversity than analysis-of-variance of taxa-richness. Based on these results we advocate the use of inclusive diversity indices in ecological studies targeting microbial communities. 相似文献
5.
Franois Blanquart Oliver Kaltz Scott L. Nuismer Sylvain Gandon 《Ecology letters》2013,16(9):1195-1205
Patterns of local adaptation are expected to emerge when selection is spatially heterogeneous and sufficiently strong relative to the action of other evolutionary forces. The observation of local adaptation thus provides important insight into evolutionary processes and the adaptive divergence of populations. The detection of local adaptation, however, suffers from several conceptual, statistical and methodological issues. Here, we provide practical recommendations regarding (1) the definition of local adaptation, (2) the analysis of transplant experiments and (3) the optimisation of the experimental design of local adaptation studies. Together, these recommendations provide a unified approach for measuring local adaptation and understanding the adaptive divergence of populations in a wide range of biological systems. 相似文献
6.
Progressive habitat transformation causes global changes in landscape biodiversity patterns, but can be hard to quantify. Rarefaction/extrapolation approaches can quantify within‐habitat biodiversity, but may not be useful for cases in which one habitat type is progressively transformed into another habitat type. To quantify biodiversity patterns in such transformed landscapes, we use Hill numbers to analyse individual‐based species abundance data or replicated, sample‐based incidence data. Given biodiversity data from two distinct habitat types, when a specified proportion of original habitat is transformed, our approach utilises a proportional mixture of two within‐habitat rarefaction/extrapolation curves to analytically predict biodiversity changes, with bootstrap confidence intervals to assess sampling uncertainty. We also derive analytic formulas for assessing species composition (i.e. the numbers of shared and unique species) for any mixture of the two habitat types. Our analytical and numerical analyses revealed that species unique to each habitat type are the most important determinants of landscape biodiversity patterns. 相似文献
7.
Jack J. Lennon Patricia Koleff Jeremy J. D. Greenwood Kevin J. Gaston 《Ecology letters》2004,7(2):81-87
There is little understanding in ecology as to how biodiversity patterns emerge from the distribution patterns of individual species. Here we consider the question of the contributions of rare (restricted range) and common (widespread) species to richness patterns. Considering a species richness pattern, is most of the spatial structure, in terms of where the peaks and troughs of diversity lie, caused by the common species or the rare species (or neither)? Using southern African and British bird richness patterns, we show here that commoner species are most responsible for richness patterns. While rare and common species show markedly different species richness patterns, most spatial patterning in richness is caused by relatively few, more common, species. The level of redundancy we found suggests that a broad understanding of what determines the majority of spatial variation in biodiversity may be had by considering only a minority of species. 相似文献
8.
Chao A Chiu CH Jost L 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1558):3599-3609
We propose a parametric class of phylogenetic diversity (PD) measures that are sensitive to both species abundance and species taxonomic or phylogenetic distances. This work extends the conventional parametric species-neutral approach (based on 'effective number of species' or Hill numbers) to take into account species relatedness, and also generalizes the traditional phylogenetic approach (based on 'total phylogenetic length') to incorporate species abundances. The proposed measure quantifies 'the mean effective number of species' over any time interval of interest, or the 'effective number of maximally distinct lineages' over that time interval. The product of the measure and the interval length quantifies the 'branch diversity' of the phylogenetic tree during that interval. The new measures generalize and unify many existing measures and lead to a natural definition of taxonomic diversity as a special case. The replication principle (or doubling property), an important requirement for species-neutral diversity, is generalized to PD. The widely used Rao's quadratic entropy and the phylogenetic entropy do not satisfy this essential property, but a simple transformation converts each to our measures, which do satisfy the property. The proposed approach is applied to forest data for interpreting the effects of thinning. 相似文献
9.
In a context of land scarcity, food production and biodiversity conservation objectives compete for land. The shape of the relationship between these two objectives may be helpful to inform decision-making. However, the metrics used to evaluate this relationship have so far been restricted to species abundances and species richness, which give no information on possible consequences on ecosystem functioning or on evolution history. Indeed, the shapes of the relationship between food production and other diversity facets, such as functional diversity and phylogenetic diversity, have rarely been studied. We considered 3 diversity facets: taxonomic diversity, functional diversity and phylogenetic diversity. For each facet, several biodiversity metrics have been proposed. The objective of this work was to investigate whether the shape of the trade-off curve between food production and biodiversity metrics depended on the considered facet of biodiversity. Using data from the national agricultural statistics, we computed edible energy from crops and from livestock on a nation-wide gradient covering French agroecosystems. Using bird observation data provided by the French Breeding Bird Survey (FBBS), we computed 9 (3 for each facet) biodiversity metrics in 516 different sites of the FBBS. The trade-off curves were then computed using additive mixed models. All metrics decreased along a crop production gradient. For functional and taxonomic diversity metrics, the slope was steeper at high levels of production, suggesting that actions aiming at increasing local taxonomic or functional diversity may be more efficient in regions with highest crop production, if restoration follows the same trajectory as biodiversity loss. The decrease was steeper for functional diversity than for taxonomic diversity, suggesting that agriculture can reduce the functional diversity of birds more than their taxonomic diversity. 相似文献
10.
11.
Beta diversity – the variation in species composition among spatially discrete communities – and sampling grain – the size of samples being compared – may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground‐foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales. 相似文献
12.
Thore Engel Shane A. Blowes Daniel J. McGlinn Nicholas J. Gotelli Brian J. McGill Jonathan M. Chase 《Ecology and evolution》2022,12(8)
Patterns of biodiversity provide insights into the processes that shape biological communities around the world. Variation in species diversity along biogeographical or ecological gradients, such as latitude or precipitation, can be attributed to variation in different components of biodiversity: changes in the total abundance (i.e., more‐individual effects) and changes in the regional species abundance distribution (SAD). Rarefaction curves can provide a tool to partition these sources of variation on diversity, but first must be converted to a common unit of measurement. Here, we partition species diversity gradients into components of the SAD and abundance using the effective number of species (ENS) transformation of the individual‐based rarefaction curve. Because the ENS curve is unconstrained by sample size, it can act as a standardized unit of measurement when comparing effect sizes among different components of biodiversity change. We illustrate the utility of the approach using two data sets spanning latitudinal diversity gradients in trees and marine reef fish and find contrasting results. Whereas the diversity gradient of fish was mostly associated with variation in abundance (86%), the tree diversity gradient was mostly associated with variation in the SAD (59%). These results suggest that local fish diversity may be limited by energy through the more‐individuals effect, while species pool effects are the larger determinant of tree diversity. We suggest that the framework of the ENS‐curve has the potential to quantify the underlying factors influencing most aspects of diversity change. 相似文献
13.
驯鹿对苔藓植物的选择食用及其生境的物种多样性 总被引:2,自引:0,他引:2
苔藓植物由于含有较高浓度的不饱和脂肪酸尤其是花生四烯酸可以提高动物的御寒能力,因此驯鹿和其他许多生活在寒冷地区的食草动物以及鸟类将苔藓作为主要的食物来源。为了进一步了解苔藓被采食的情况,本实验对生活在内蒙古大兴安岭满归敖鲁古雅民族乡的驯鹿3个月份的粪便(1999年采)进行了显微观察,发现其中苔藓植物在4月份占5.63%、6月份2.2%、9月份12.92%,3个月份的粪便中均以赤茎藓(Pleurozium schreberi)为主,占苔藓总量的70%以上,曲尾藓(Dicranum spp.)、毛叶苔(Ptilidium ciliare)和沼泽皱蒴藓(Aulacomnium palustre)也有少量食用。对驯鹿生活区域内4种林型下苔藓植物的盖度和生物量的测定结果表明,驯鹿对苔藓植物的选择食用与苔藓植物的物种和丰富度相关。 相似文献
14.
Max Mallen‐Cooper Matthew A. Bowker Anita J. Antoninka David J. Eldridge 《Restoration Ecology》2020,28(Z2):S56-S66
Biocrusts are multifunctional communities that are increasingly being used to restore degraded or damaged ecosystems. Concurrently, restoration science is shifting away from the use of purely structural metrics, such as relative abundance, to more functional approaches. Although biocrust restoration technology is advancing, there is a lack of readily available information on how to monitor biocrust functioning and set appropriate restoration goals. We therefore compiled a selection of 22 functional indicators that can be used to monitor biocrust functions, such as CO2 exchange as an indicator of productivity or soil aggregate stability as a proxy for erosion resistance. We describe the functional importance of each indicator and the available protocols with which it may be measured. The majority of indicators can be measured as a functional trait of species by using patches of biocrust or cultures that contain only one species. Practitioners wishing to track the multifunctionality of an entire biocrust community would be advised to choose one indicator from each broad functional group (erosion resistance, nutrient accumulation, productivity, energy balance, hydrology), whereas a targeted approach would be more appropriate for projects with a key function of interest. Because predisturbance data are rarely available for biocrust functions, restoration goals can be based on a closely analogous site, literature values, or an expert elicitation process. Finally, we advocate for the establishment of a global trait database for biocrusts, which would reduce the damage resulting from repeated sampling, and provide a wealth of future research opportunities. 相似文献
15.
16.
Functional rarity (FR) — a feature combining a species'' rarity with the distinctiveness of its traits — is a promising tool to better understand the ecological importance of rare species and consequently to protect functional diversity more efficiently. However, we lack a systematic understanding of FR on both the species level (which species are functionally rare and why) and the community level (how is FR associated with biodiversity and environmental conditions). Here, we quantify FR for 218 plant species from German hay meadows on a local, regional, and national scale by combining data from 6500 vegetation relevés and 15 ecologically relevant traits. We investigate the association between rarity and trait distinctiveness on different spatial scales via correlation measures and show which traits lead to low or high trait distinctiveness via distance‐based redundancy analysis. We test how species richness and FR are correlated, and use boosted regression trees to determine environmental conditions that are driving species richness and FR. On the local scale, only rare species showed high trait distinctiveness while on larger spatial scales rare and common species showed high trait distinctiveness. As infrequent trait attributes (e.g., legumes, low clonality) led to higher trait distinctiveness, we argue that functionally rare species are either specialists or transients. While specialists occupy a particular niche in hay meadows leading to lower rarity on larger spatial scales, transients display distinct but maladaptive traits resulting in high rarity across all spatial scales. More functionally rare species than expected by chance occurred in species‐poor communities indicating that they prefer environmental conditions differing from characteristic conditions of species‐rich hay meadows. Finally, we argue that functionally rare species are not necessarily relevant for nature conservation because many were transients from surrounding habitats. However, FR can facilitate our understanding of why species are rare in a habitat and under which conditions these species occur. 相似文献
17.
Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities 下载免费PDF全文
Abbie S. A. Chapman Verena Tunnicliffe Amanda E. Bates 《Diversity & distributions》2018,24(5):568-578
Aim
Rare species typically contribute more to functional diversity than common species. However, humans have altered the occupancy and abundance patterns of many species—the basis upon which we define “rarity.” Here, we use a globally unique dataset from hydrothermal vents—an untouched ecosystem—to test whether rare species over‐contribute to functional diversity.Location
Juan de Fuca Ridge hydrothermal vent fields, Northeast Pacific Ocean.Methods
We first conduct a comprehensive review to set up expectations for the relative contributions of rare and common species to functional diversity. We then quantify the rarity and commonness of 37 vent species with relevant trait information to assess the relationship between rarity and functional distinctiveness—a measure of the uniqueness of the traits of a species relative to traits of coexisting species. Next, we randomly assemble communities to test whether rare species over‐contribute to functional diversity in artificial assemblages ranging in species richness. Then, we test whether biotic interactions influence functional diversity contributions by comparing the observed contribution of each species to a null expectation. Finally, we identify traits driving functional distinctiveness using a distance‐based redundancy analysis.Results
Across functional diversity metrics and species richness levels, we find that both rare and common species can contribute functional uniqueness. Some species always offer unique trait combinations, and these species host bacterial symbionts and provide habitat complexity. Moreover, we find that contributions of species to functional diversity may be influenced by biotic interactions.Main conclusions
Our findings show that many common species make persistent, unique contributions to functional diversity. Thus, it is key to consider whether the abundance and occupancy of species have been reduced, relative to historical baselines, when interpreting the contributions of rare species to functional diversity. Our work highlights the importance of testing ecological theory in ecosystems unaffected by human activities for the conservation of biodiversity. 相似文献18.
Eisenbach M 《Journal of cellular physiology》2007,213(3):574-580
Chemotaxis is a basic recognition process, governed by protein network that translates molecular-based information on the surrounding environment into a guided motional response of the recipient cell or organism. This process is prevalent from bacteria to human beings. Some of the chemotaxis systems--like that of the bacterium Escherichia coli--are well established; others--like that of mammalian sperm cells--are at their relatively early stages of research. In contrast to mammalian sperm chemotaxis, where studies have so far been limited to the phenomenological level primarily, the model of bacterial chemotaxis is known down to the angstrom resolution. Despite this difference in depth of understanding, many fundamental questions are open not only in the new but also in the old chemotaxis fields of research, and recent advances in them are raising additional intriguing questions. This review summarizes some of these surprises and previously unasked or overlooked questions, and as such it offers a guided tour through conceptual changes in chemotaxis. 相似文献
19.
Stephen P. Hubbell 《Ecology and evolution》2013,3(10):3263-3274
Data from a global network of large, permanent plots in lowland tropical forests demonstrate (1) that the phenomenon of tropical tree rarity is real and (2) that almost all the species diversity in such forests is due to rare species. Theoretical and empirically based reasoning suggests that many of these rare species are not as geographically widespread as previously thought. These findings suggest that successful strategies for conserving global tree diversity in lowland tropical forests must pay much more attention to the biogeography of rarity, as well as to the impact of climate change on the distribution and abundance of rare species. Because the biogeography of many tropical tree species is poorly known, a high priority should be given to documenting the distribution and abundance of rare tropical tree species, particularly in Amazonia, the largest remaining tropical forested region in the world. 相似文献