首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potato is an autotetraploid crop plant that is not very amenable to the deployment of transposon tagging for gene cloning and gene identification. After diploidisation it is possible to get potato genotypes that grow well, but they are self-incompatible. This prevents the production of selfed progeny that are normally used in gene tagging approaches to select for parental lines with the target gene to be tagged in a homozygous stage. We describe here an alternative selection method for directed transposon tagging for a gene of interest in a heterozygous background. Diploid potato plants with a Ds transposon linked to the desired gene of interest (the Phytophthora infestans R1 resistance locus) in a heterozygous stage were used for the development of this directed transposon tagging strategy. After crossing to a diploid Ac transposon-containing genotype, 22 ’interesting’ seedlings (R1Ds/r–; Ac/–) were selected that showed active Ds transposition as displayed by DNA blot hybridisation, empty donor site PCR and sequencing. Protoplast isolation and the use of the hygromycin gene as a cell-specific selection marker of Ds excision enabled the direct selection of Ds excision sectors in these highly chimaeric seedlings. This somatic selection of Ds transpositions and the regeneration through protoplasts resulted in the development of a large population of almost 2000 hygromycin-resistant plants. Southern blot analysis confirmed the insertion of Ds at independent positions in the genome. Every selected plant displayed independent Ds excisions and re-insertions due to the expression of the Ac transposase throughout development. This population, which is developed from seedlings with the desired R1 gene in a heterozygous stage, is directly useful for searching for transposon-tagged R1 mutants. In general, this approach for selecting for somatic transpositions is particularly suitable for the molecular isolation of genes in a heterozygous crop like potato. Received: 29 November 1999 / Accepted: 30 December 1999  相似文献   

2.
The maize transposon Ac can move to a new location within the genome to create knockout mutants in transgenic plants. In rice, Ac transposon is very active but sometimes undergoes further transposition and leaves an empty mutated gene. Therefore, we developed a one-time transposon system by locating one end of the transposon in the intron of the Ac transposase gene, which is under the control of the inducible promoter (PR-1a). Treatment with salicylic acid induced transposition of this transposon, COYA, leading to transposase gene breakage in exons. The progeny plants inheriting the transposition events become stable knockout mutants, because no functional transposase could be yielded. The behavior of COYA was analyzed in single-copy transgenic rice plants. We determined the expression of the modified transposase gene and its ability to trigger transposition events in transgenic rice plants. The COYA element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The discovery of a new maize (Zea mays L.) transposon system, Mutator, and the cloning of the 1.4 kilobase transposon, Mul, have made feasible the isolation of nuclear photosynthetic genes which are recognized only by their mutant phenotype. Mutant maize plants which express a high chlorophyll fluorescent (hcf) phenotype due to a defect in the electron transport or photophosphorylation apparatus have been isolated following mutagenesis with an active Mutator stock. The affected genes and their products in these mutants are inaccessible to classical methods of analysis. However, mutagenesis with the Mutator transposon makes it possible to isolate these genes.Although the PSII-deficient mutant hcf3 has been thoroughly studied by classical photo-biological methods, the nature of the lesion which results in the observed phenotype has not been established. A Mutator-induced allele of hcf3 has been isolated. A fragment of genomic DNA has been identified which is homologous to Mul and co-segregates with the mutant phenotype. This fragment is expected to contain a portion of the hcf3 locus which will be used to clone the normal gene. Direct study of the gene can provide insight into the nature and function of its polypeptide product.This approach can be used to study any photosynthetic gene which has been interrupted by a transposon. The isolation of more than 100 different chemically-induced hcf mutants, most of which can not be fully characterized using classical means, indicates the wealth of information which can be obtained using a transposon tagging technique.  相似文献   

4.
Summary A method for transposon mutagenesis in Azospirillum lipoferum 29708 is reported with transposon Tn5. The suicide plasmid pSUP2021 was used to deliver Tn5 in A. lipoferum using Escherichia coli SM10 as the donor. Neomycin-resistant transconjugants were detected at a frequency of 6x10-6 per recipient. Different types of mutants were isolated, e.g. auxotrophic, coloured, IAA-negative, and IAA-overproducers. Among the auxotrophic mutants, cysteine and methionine requirers prevailed. Random Tn5-insertion with only one copy per mutant was demonstrated by Southern blotting and hybridization. Tn5-induced mutants are relatively stable, with reversion rates of 2–20×10-8. A gene which is a part of the carotenoid pathway is closely linked to the histidine genes. The existence of two pathways for IAA production in A. lipoferum is discussed.  相似文献   

5.
A set of random transposon vectors pUTTns that facilitates the markerless integration of new functions into the chromosome of gram-negative bacteria has been developed. The vectors, which are derived from mini-Tn5 transposons, are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis, but they are external to the mobile element. The vectors' conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor. Internal to the mini-Tn5 element is a cassette that contains a selectable antibiotic resistance marker (kanamycin, chloramphenicol, or tetracycline resistance gene), a counter-selectable marker (sacB), a 430-bp repeat of the sacB gene 3′ end acted as the directly-repeated (DR) sequence, and modified multiple cloning sites (MCS). After two total rounds of transposon integration and recombination between the two DRs, only the exogenous DNA inserted into the MCS (passenger genes) and a single 430-bp scar sacBDR fragment remained in the chromosome after excision. The utility of these vectors was demonstrated by integrating the organophosphorus insecticide hydrolase gene (mpd) into the chromosome of Escherichia, Pseudomonas, Sphingomonas, and Paracoccus species. Sequential integration of another organophosphorus insecticide hydrolase gene (oph) into the previously engineered bacteria, without bringing any selectable markers, was also successful. These engineered bacteria were relatively stable. Cell viability and original degrading characteristics were not affected compared with the original recipients. This shows that the developed system is very useful for the markerless integration of exogenous genes into the chromosome of gram-negative eubacteria.  相似文献   

6.
目的: 转座突变技术是发现新功能基因和获得高产天然产物菌株的一种有效策略。通过理性设计和构建Tn5型转座突变系统,并将其应用于阿维链霉菌,筛选高产阿维菌素的工程菌株。方法: 在转座突变载体pUCTN转座插入片段的上游和下游分别引入链霉菌常用的强启动子kasOp*和P21,强化插入位置上游和下游基因的转录表达;在插入片段两端分别添加双向转录终止子T1和T2,有效终止插入序列两端靶基因的转录,引入强启动子和终止子的目的在于增强对转座突变株生理代谢活动的扰动。结果: 通过优化供体菌和受体菌的比例,转座效率显著提高。随机选择500株转座突变株进行发酵和阿维菌素产量测试,筛选到3株突变株的阿维菌素产量明显高于出发菌株产量的50%以上。结论: Tn5转座突变系统为研究阿维链霉菌的基因功能和生理代谢提供了有效的分子遗传工具。  相似文献   

7.
Recently thegfp (green fluorescent protein) gene from the jellyfishAequoria victoria has been widely used as a reporter gene. In this study mini-transposons, named as mini-Tn5gfp, were constructed by subcloning thegfp gene into a transposon Tn5. To improve the expression level of thegfp gene, tandom array ofgfp gene was obtained. The constructs were successfully used in tagging target microorganisms by transposition. The level of GFP expression was found to be closely correlated with the copy number of the gfp transposed. These constructs will facillitate not only efficient tagging of whole organism but also genetic marking of target genes by transposition.  相似文献   

8.
In order to make the tomato genome more accessible for molecular analysis and gene cloning, we have produced 405 individual tomato (Lycopersicon esculentum) lines containing a characterized copy of pJasm13, a multifunctional T-DNA/modifiedDs transposon element construct. Both the T-DNA and the Ds element in pJasm13 harbor a set of selectable marker genes to monitor excision and reintegration of Ds and additionally, target sequences for rare cutting restriction enzymes (I-PpoI, SfiI, NotI) and for site-specific recombinases (Cre, FLP, R). Blast analysis of flanking genomic sequences of 174 T-DNA inserts revealed homology to transcribed genes in 69 (40%), of which about half are known or putatively identified as genes and ESTs. The map position of 140 individual inserts was determined on the molecular genetic map of tomato. These inserts are distributed over the 12 chromosomes of tomato, allowing targeted and non-targeted transposon tagging, marking of closely linked genes of interest and induction of chromosomal rearrangements including translocations or creation of saturation-deletions or inversions within defined regions linked to the T-DNA insertion site. The different features of pJasm13 were successfully tested in tomato and Arabidopsis thaliana, thus providing a new tool for molecular/genetic dissection studies, including molecular and physical mapping, mutation analysis and cloning strategies in tomato and potentially, in other plants as well.Equal contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this workEqual contributors to this work  相似文献   

9.
10.
We report further development of a novel recombinant protein expression system based on the Gram-negative bacterium, Ralstonia eutropha. In this study, we were able to express soluble, active, organophosphohydrolase (OPH), a protein that is prone to inclusion body formation in Escherichia coli, at titers greater than 10 g/L in high cell density fermentation. This represents a titer that is approximately 100-fold greater than titers previously reported in E. coli for this enzyme. R. eutropha strains expressing OPH were generated in two cloning steps. First, the T7 RNA polymerase gene was placed under the control of the strong, inducible phaP promoter and integrated into the phaP locus of R. eutropha NCIMB 40124. Second, a single copy of the oph gene under control of the T7 promoter was randomly integrated into the chromosome using a transposon cloning vector.  相似文献   

11.
We have tested a synthetic, functional, transposon called Sleeping Beauty for use in mice as a germline insertional mutagen. We describe experiments in which mutagenic, polyadenylation‐site trapping, transposon vectors were introduced into the germline of mice. When doubly transgenic males, expressing the Sleeping Beauty transposase gene (SB10) and harboring poly(A)‐trap transposon vectors, were outcrossed to wild‐type females, offspring were generated with new transposon insertions. The frequency of new transposon insertion is roughly two per male gamete. These new insertions can be passed through the germline to the next generation and can insert into or near genes. We have generated a preliminary library of 24 mice harboring 56 novel insertion sites, including one insertion into a gene represented in the EST database and one in the promoter of the galactokinase (Gck) gene. This technique has promise as a new strategy for forward genetic screens in the mouse or functional genomics. genesis 30:82–88, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
The DNA regions upstream and downstream of the Bradyrhizobium japonicum gene sipF were cloned by in vivo techniques and subsequently sequenced. In order to study the function of the predicted genes, a new transposon for in vitro mutagenesis, TnKPK2, was constructed. This mutagenesis system has a number of advantages over other transposons. TnKPK2 itself has no transposase gene, making transposition events stable. Extremely short inverted repeats minimize the length of the transposable element and facilitate the determination of the nucleotide sequence of the flanking regions. Since the transposable element carries a promoterless phoA reporter gene, the appearance of functional PhoA fusion proteins indicates that TnKPK2 has inserted in a gene encoding a periplasmic or secreted protein. Although such events are extremely rare, because the transposon has to insert in-frame, in the correct orientation, and at an appropriate location in the target molecule, a direct screening procedure on agar indicator plates permits the identification of candidate clones from large numbers of colonies. In this study, TnKPK2 was used for the construction of various symbiotic mutants of B. japonicum. One of the mutant strains, A2-10, which is defective in a gene encoding a protein that comigrates with bacterioferritin (bcpB), was found to induce the formation of small and ineffective nodules.Communicated by A. Kondorosi  相似文献   

13.
Dias MV  Basso LR  Coelho PS 《Gene》2008,417(1-2):13-18
Transposon elements are important tools for gene function analysis, for example they can be used to easily create genome-wide collections of insertion mutants. Transposons may also carry sequences coding for an epitope or fluorescent marker useful for protein expression and localization analysis. We have developed three new Tn5-based transposons that incorporate a GFP (green fluorescent protein) coding sequence to generate fusion proteins in the important fungal pathogen Candida albicans. Each transposon also contains the URA3 and Kan(R) genes for yeast and bacterial selection, respectively. After in vitro transposition, the insertional allele is transferred to the chromosomal locus by homologous recombination. Transposons Tn5-CaGFP and Tn5-CaGFP-URA3::FLIP can generate C-terminal truncated GFP fusions. A URA3 flipper recycling cassette was incorporated into the transposon Tn5-CaGFP-URA3::FLIP. After the induction of Flip recombinase to excise the marker, the heterozygous strain is transformed again in order to obtain a GFP-tagged homozygous strains. In the Tn5-CaGFP-FL transposon the markers are flanked by a rare-cutting enzyme. After in vitro transposition into a plasmid-borne target gene, the markers are eliminated by restriction digestion and religation, resulting in a construct coding for full-length GFP-fusion proteins. This transposon can generate plasmid libraries of GFP insertions in proteins where N- or C-terminal tagging may alter localization. We tested our transposon system by mutagenizing the essential septin CDC3 gene. The results indicate that the Cdc3 C-terminal extension is important for correct septin filament assembly. The transposons described here provide a new system to obtain global gene expression and protein localization data in C. albicans.  相似文献   

14.
Ralstonia solanacearum, the causal agent of the devastating bacterial wilt disease, is of particular interest to the scientific community. The repertoire of type III effectors plays an important role in the evasion of plant immunity, but tolerance to plant immunity is also crucial for the survival and virulence of R. solanacearum. Nevertheless, a systematic study of R. solanacearum tolerance to plant immunity is lacking. In this study, we used exogenous salicylic acid (SA) to improve the immunity of tomato plants, followed by transposon insertion sequencing (Tn-seq) analysis and the identification of R. solanacearum genes associated with tolerance to plant immunity. Target gene deletion revealed that the lipopolysaccharide (LPS) production genes RS_RS02830, RS_RS03460, and RS_RS03465 are essential for R. solanacearum tolerance to plant immunity, and their expression is induced by plant immunity, thereby expanding our knowledge of the pathogenic function of R. solanacearum LPS. SA treatment increased the relative abundance of transposon insertion mutants of four genes, including two genes with unknown function, RS_RS11975 and RS_RS07760. Further verification revealed that deletion of RS_RS11975 or RS_RS07760 resulted in reduced in vivo competitive indexes but increased tolerance to plant immunity induced by SA treatment, suggesting that these two genes contribute to the trade-off between tolerance to plant immunity and fitness cost. In conclusion, this work identified and validated R. solanacearum genes required for tolerance to plant immunity and provided essential information for a more complete view of the interaction between R. solanacearum and the host plant.  相似文献   

15.
Recent results confirm that long‐term expression of therapeutic transgenes can be achieved by using a transposon‐based system in primary stem cells and in vivo. Transposable elements are natural DNA transfer vehicles that are capable of efficient genomic insertion. The latest generation, Sleeping Beauty transposon‐based hyperactive vector (SB100X), is able to address the basic problem of non‐viral approaches – that is, low efficiency of stable gene transfer. The combination of transposon‐based non‐viral gene transfer with the latest improvements of non‐viral delivery techniques could provide a long‐term therapeutic effect without compromising biosafety. The new challenges of pre‐clinical research will focus on further refinement of the technology in large animal models and improving the safety profile of SB vectors by target‐selected transgene integration into genomic “safe harbors.” The first clinical application of the SB system will help to validate the safety of this approach.  相似文献   

16.
We have investigated the somatic activity of the maize Activator (Ac) element in aspen with the objective of developing an efficient transposon-based system for gene isolation in a model tree species. The analysis of the new insertion sites revealed the exact reconstitution of the Ac, however, aberrant transposition events were also found. Characterization of the genomic sequences flanking the Ac insertions showed that about one third (22/75) of the sequences were significantly similar to sequences represented in public databases and might correspond to genes. The frequency of Ac landing into coding regions was about two-fold higher when compared to the frequency of T-DNA hitting the predicted genes (5/32) in the aspen genome. Thus, Ac is demonstrated to be a potentially useful heterologous transposon tag in a tree species. This is the first report on transposon-based gene tagging in a tree species describing the excision and reinsertion of transposable element into new genomic positions. We also suggest a heterologous transposon tagging strategy that can be used in aspen somatic cells to obtain dominant gain-of-function mutants and recessive loss-of-function mutants overcoming the regeneration time barrier of a long-lived tree species.  相似文献   

17.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that grows directly within the cytoplasm of its host cell, unbounded by a vacuolar membrane. The obligate intracytoplasmic nature of rickettsial growth places severe restrictions on the genetic analysis of this distinctive human pathogen. In order to expand the repertoire of genetic tools available for the study of this pathogen, we have employed the versatile mariner-based, Himar1 transposon system to generate insertional mutants of R. prowazekii. A transposon containing the R. prowazekii arr-2 rifampin resistance gene and a gene coding for a green fluorescent protein (GFP(UV)) was constructed and placed on a plasmid expressing the Himar1 transposase. Electroporation of this plasmid into R. prowazekii resulted in numerous transpositions into the rickettsial genome. Transposon insertion sites were identified by rescue cloning, followed by DNA sequencing. Random transpositions integrating at TA sites in both gene coding and intergenic regions were identified. Individual rickettsial clones were isolated by the limiting-dilution technique. Using both fixed and live-cell techniques, R. prowazekii transformants expressing GFP(UV) were easily visible by fluorescence microscopy. Thus, a mariner-based system provides an additional mechanism for generating rickettsial mutants that can be screened using GFP(UV) fluorescence.  相似文献   

18.
Pronuclear microinjection of bacterial artificial chromosomes (BACs) is the preferred way to generate transgenic mice because the transgene accurately recapitulates expression of the endogenous gene. However, the method is demanding and the integrity and copy number of the BAC transgene is difficult to control. Here, we describe a simpler pronuclear injection method that relies on transposition to introduce full‐length BACs into the mouse genome. The bacterial backbone of a hPAX6‐GFP reporter BAC was retrofitted with PiggyBac transposon inverted terminal repeats and co‐injected with PiggyBac transposase mRNA. Both the frequency of transgenic founders as well as intact, full‐length, single copy integrations were increased. Transposition was determined by a rapid PCR screen for a transpositional signature and confirmation by splinkerette sequencing to show that theBACs were integrated as a single copy either in one or two different genomic sites. BAC transposons displayed improved functional accuracy over random integrants as evaluated by expression of the hPAX6‐GFP reporter in embryonic neural tube and absence of ectopic expression. This method involves less work to achieve increased frequencies of both transgenesis and single copy, full‐length integrations. These advantages are not only relevant to rodents but also for transgenesis in all systems. genesis 51:135–141, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A GFP excision assay was developed to monitor the excision of Ac introduced into rice by Agrobacterium-mediated transformation. The presence of a strong double enhancer element of the CaMV 35S promoter adjacent to the Ac promoter induced very early excision, directly after transformation into the plant cell, exemplified by the absence of Ac in the T-DNA loci. Excision fingerprint analysis and characterization of transposition events from related regenerants revealed an inverse correlation between the number of excision events and transposed Ac copies, with single early excisions after transformation generating Ac amplification. New transpositions were generated at a frequency of 15–50% in different lines, yielding genotypes bearing multiple insertions, many of which were inherited in the progeny. The sequence of DNA flanking Ac in three representative lines provided a database of insertion tagged sites suitable for the identification of mutants of sequenced genes that can be examined for phenotypes in a reverse genetics strategy to elucidate gene function. Remarkably, two-thirds of Ac tagged sites showing homology to sequences in public databases were in predicted genes. A clear preference of transposon insertions in genes that are either predicted by protein coding capacity or by similarity to ESTs suggests that the efficiency of recovering knockout mutants of genes could be about three times higher than random. Linked Ac transposition, suitable for targeted tagging, was documented by segregation analysis of a crippled Ac element and by recovery of a set of six insertions in a contiguous sequence of 70 kb from chromosome 6 of rice.  相似文献   

20.
Genetic analysis of Rickettsia prowazekii has been hindered by the lack of selectable markers and efficient mechanisms for generating rickettsial gene knockouts. We have addressed these problems by adapting a gene that codes for rifampin resistance for expression in R. prowazekii and by incorporating this selection into a transposon mutagenesis system suitable for generating rickettsial gene knockouts. The arr-2 gene codes for an enzyme that ADP-ribosylates rifampin, thereby destroying its antibacterial activity. Based on the published sequence, this gene was synthesized by PCR with overlapping primers that contained rickettsial codon usage base changes. This R. prowazekii-adapted arr-2 gene (Rparr-2) was placed downstream of the strong rickettsial rpsL promoter (rpsLP), and the entire construct was inserted into the Epicentre EZ::TN transposome system. A purified transposon containing rpsLP-Rparr-2 was combined with transposase, and the resulting DNA-protein complex (transposome) was electroporated into competent rickettsiae. Following selection with rifampin, rickettsiae with transposon insertions in the genome were identified by PCR and Southern blotting and the insertion sites were determined by rescue cloning and inverse PCR. Multiple insertions into widely spaced areas of the R. prowazekii genome were identified. Three insertions were identified within gene coding sequences. Transposomes provide a mechanism for generating random insertional mutations in R. prowazekii, thereby identifying nonessential rickettsial genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号