首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The polyene antibiotic amphotericin B (AmB) is known to form two types of ionic channels across sterol-containing liposomes, depending on its concentration and time after mixing (Cohen, 1992). In the present study, it is shown that AmB only kills unicellular Leishmania promastigotes (LPs) when aqueous pores permeable to small cations and anions are formed. Changes of membrane potential across ergosterol-containing liposomes and LPs were followed by fluorescence changes of 3,3′ dipropylthiadicarbocyanine (DiSC3(5)). In KCl-loaded liposomes suspended in an iso-osmotic sucrose solution, low AmB concentrations (≤0.1 μm) induced a polarization potential, indicating K+ leakage, but no movement of cations and anions was allowed until AmB concentrations greater than 0.1 μm were added. In agreement with these data, it was found that AmB altered the negative membrane potential held across LPs in a manner consistent with the differential cation/anion selectivity exhibited by the channels formed in liposomes. Thus, LPs suspended in an iso-osmotic sucrose solution did not exhibit any AmB-induced membrane depolarization effect brought about by efflux of anions until 0.1 μm or higher AmB concentrations were added. By contrast, LPs suspended in an iso-osmotic NaCl solution and exposed to 0.05 μm AmB exhibited a nearly total collapse of the negative membrane potential, indicating Na+ entry into the cells. The concentration dependence of the AmB-induced permeability to different salts was also measured across vesicles derived from the plasma membrane of leishmanias (LMVs), by using a rapid mixing technique. At concentrations above 0.1 μm, AmB induced the formation of aqueous pores across LMVs with a positive cooperativity, yielding Hill coefficients between 2 to 3. Measured anion selectivity across such aqueous pores followed the sequence: SCN > NO3 > Cl > I > Br > acetate (SO2− 4 being impermeable). Cell killing by AmB was followed by fluorescence changes of the DNA-binding compound ethidium bromide (EB). At low concentrations (≤0.1 μm), AmB was found to be nonlethal against LPs but, above this concentration, leishmanias were rapidly killed. The rate and extent of such an effect were found to be dependent on the type of cation and anion present in the external aqueous solution. For both NH+ 4 and Na+ salts, the measured rank order of AmB cell killing followed the same sequence that was determined for AmB-induced salt permeation across LMVs. Further, replacement of either extracellular Na+ by choline or Cl by SO2− 4, or its partial substitution by sucrose, in iso-osmotic conditions, led to a complete inhibition of the killing effect exerted by otherwise lethal AmB concentrations. Finally, it was shown that tetraethylammonium (TEA+), an organic cation that is known to block AmB-induced salt permeation across LMVs was able to retard the time lag observed for EB incorporation across LPs, indicating that this parameter can be taken to represent the time taken for salt accumulation inside the parasites. The present results thus indicate clearly that low AmB concentrations (≤0.1 μm) were able to form across LPs, cation channels that collapsed the parasite membrane potential but are not lytic. At high concentrations (<≥0.1 μm), a salt influx via the aqueous pores formed by the antibiotic was followed by osmotic changes leading to cell lysis. This last stage is supported by electron microscopy observations of the changes of parasite morphology immediately upon addition of AmB, which indicated that the typical elongated promastigote cell forms became rounded and the flagella swells and round up. The present work is the first demonstration of the in vitro sensitivity of Leishmania promastigotes to osmotic lysis by AmB. Received: 25 September 1995/Revised: 11 March 1996  相似文献   

2.
Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H+-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca2+ and H+ surges triggered by the antimicrobial agent amiodarone, and impaired Ca2+ sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.  相似文献   

3.
Primary aliphatic alkanols from C6 to C13 were tested for their antifungal activity against Saccharomyces cerevisiae using a broth dilution method. Undecanol (C11) was found to be the most potent fungicide against this yeast with the minimum fungicidal concentration (MFC) of 25 μg/ml (0.14 mM), followed by decanol (C10) with the minimum inhibitory concentration (MIC) of 50 μg/ml (0.31 mM). The time-kill curve study showed that undecanol was fungicidal against S. cerevisiae at any growth stages. This fungicidal activity was not influenced by pH values. Dodecanol (C12) was the most effective fungistatic but did not show any fungicidal activity up to 1600 μg/mL. Fungistatic dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control indicating that the effect of dodecanol on S. cerevisiae was classified as a sublethal damage. However, fungistatic dodecanol combined with sublethal amount of anethole showed a fungicidal activity against this yeast. Anethole completely restricted the recovery of cell viability. Therefore expression of the synergistic effect was probably due to the blockade of the recovering process from dodecanol induced-stress. The alkanols tested inhibited glucose-induced acidification by inhibiting the plasma membrane H+-ATPase. Octanol (C8) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The same series of aliphatic primary alkanols was also tested against a food spoilage fungus Zygosaccharomyces bailii and compared with their effects against S. cerevisiae. Decanol was found to be the most potent fungicide against Z. bailii with an MFC of 50 μg/ml (0.31 mM), whereas undecanol was found to be the most potent fungistatic with an MIC of 25 μg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. This antifungal activity was slightly enhanced in combination with anethole. The primary antifungal action of medium-chain (C9–C12) alkanols comes from their ability as nonionic surfactants to disrupt the native membrane-associated function of the integral proteins. Hence, the antifungal activity of alkanols is mediated by biophysical process, and the maximum activity can be obtained when balance between hydrophilic and hydrophobic portions becomes the most appropriate.  相似文献   

4.
Amphotericin B (AmB) is a crucial agent in the management of serious systemic fungal infections. In spite of its proven track record, its well-known side effects and toxicity will sometimes require discontinuation of therapy despite a life-threatening systemic fungal infection. The mechanism of action of AmB is based on the binding of the AmB molecule to the fungal cell membrane ergosterol, producing an aggregate that creates a transmembrane channel, allowing the cytoplasmic contents to leak out, leading to cell death. Most of the efforts at improving AmB have been focused on the preparation of AmB with a lipid conjugate.AmB administration is limited by infusion-related toxicity, an effect postulated to result from proinflammatory cytokine production. The principal acute toxicity of AmB deoxycholate includes nausea, vomiting, rigors, fever, hypertension or hypotension, and hypoxia.Its principal chronic adverse effect is nephrotoxicity. AmB probably produces renal injury by a variety of mechanisms. Risk factors for AmB nephrotoxicity include male gender, higher average daily dose of AmB (≥35 mg/day), diuretic use, body weight ≥90 kg, concomitant use of nephrotoxic drugs, and abnormal baseline renal function. Clinical manifestations of AmB nephrotoxicity include renal insufficiency, hypokalemia, hypomagnesemia, metabolic academia, and polyuria due to nephrogenic diabetes insipidus. Human studies show convincingly that sodium loading in excess of the usual dietary intake notably reduces the incidence and severity of AmB-induced nephrotoxicity.  相似文献   

5.
Lariciresinol is an enterolignan precursor isolated from the herb Sambucus williamsii, a folk medicinal plant used for its therapeutic properties. In this study, the antifungal properties and mode of action of lariciresinol were investigated. Lariciresinol displays potent antifungal properties against several human pathogenic fungal strains without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of action of lariciresinol, the membrane interactions of lariciresinol were examined. Fluorescence analysis using the membrane probe 3,3′-diethylthio-dicarbocyanine iodide (DiSC3-5) and 1,6-diphenyl-1,3,5-hexatriene (DPH), as well as a flow cytometric analysis with propidium iodide (PI), a membrane-impermeable dye, indicated that lariciresinol was associated with lipid bilayers and induced membrane permeabilization. Therefore, the present study suggests that lariciresinol possesses fungicidal activities by disrupting the fungal plasma membrane and therapeutic potential as a novel antifungal agent for the treatment of fungal infectious diseases in humans.  相似文献   

6.
The activity of protein O‐mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post‐harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall‐interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O‐glycosylation in the PAF26‐mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence.  相似文献   

7.
In the vacuolar basic amino acid (VBA) transporter family of Saccharomyces cerevisiae, VBA4 encodes a vacuolar membrane protein with 14 putative transmembrane helices. Transport experiments with isolated vacuolar membrane vesicles and estimation of the amino acid contents in vacuoles showed that Vba4p is not likely involved in the transport of amino acids. We found that the vba4Δ cells, as well as vba1Δ and vba2Δ cells, showed increased susceptibility to several drugs, particularly to azoles. Although disruption of the VBA4 gene did not affect the salt tolerance of the cells, vacuolar fragmentation observed under high salt conditions was less prominent in vba4Δ cells than in wild type, vba1Δ, and vba2Δ cells. Vba4p differs from Vba1p and Vba2p as a vacuolar transporter but is important for the drug resistance and vacuolar morphology of S. cerevisiae.  相似文献   

8.
The antimicrobial activity of ε-poly-l-lysine (EPL) has been documented, but its antifungal activity on yeast is not well defined and its mechanism of action has been vaguely explained. Our studies revealed that on both, Candida albicans and Saccharomyces cerevisiae, the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were 250 μg·mL?1; EPL produced a K+ and Ca2+ efflux, and at higher concentrations also an efflux of material absorbing at 260 nm, small peptides, and phosphate is produced, along with the inhibition of fermentation and extracellular acidification and respiration. Moreover, growth was inhibited, reactive oxygen species (ROS) production increased, and cell viability decreased. The polycation also produced plasma membrane potential hyperpolarization. The effects were dependent both on the cell quantity and polycation concentration, as well as the media used. The plasma membrane disruption was confirmed by TEM and PI staining.  相似文献   

9.
Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.  相似文献   

10.
Antimicrobial peptides (AMPs) are promising agents for control of bacterial and fungal infections. Traditionally, AMPs were thought to act through membrane disruption but recent experiments have revealed a diversity of mechanisms. Here we describe a novel antifungal activity for bovine pancreatic trypsin inhibitor (BPTI). BPTI has several features in common with a subset of antimicrobial proteins in that it is small, cationic and stabilized by disulphide bonds. BPTI inhibits growth of Saccharomyces cerevisiae and the human pathogen Candida albicans. Screening of the yeast heterozygous essential deletion collection identified the magnesium transporter Alr1p as a potential BPTI target. BPTI treatment of wild type cells resulted in a lowering of cellular Mg2+ levels. Populations treated with BPTI had fewer cells in S‐phase of the cell cycle and a corresponding increase of cells in G0/G1 and G2 phases. The same patterns of cell cycle arrest obtained with BPTI were also obtained with the magnesium channel inhibitor hexamine(III)cobalt chloride. Analysis of the growth inhibition of C. albicans revealed that BPTI is inhibiting growth via the same mechanism in the two yeast species. Inhibition of magnesium uptake by BPTI represents a novel mechanism of action for AMPs.  相似文献   

11.
Arenicin-1 is a 21-residue peptide which was derived from Arenicola marina. In this study, we investigated the antifungal effects and its mechanism of action towards human pathogenic fungi. Arenicin-1 exerted remarkable fungicidal activity with both energy-dependent and salt-insensitive manners. To investigate the fungicidal mechanisms of arenicin-1, the membrane interactions of arenicin-1 were examined. Flow cytometric analysis, using propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)], as well as fluorescence analysis, regarding the membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH), were conducted against Candida albicans. The results demonstrated that arenicin-1 was associated with lipid bilayers and induced membrane permeabilization. Additionally, the membrane studies in regard to liposomes resembling the phospholipid bilayer of C. albicans confirmed the membrane-disruptive potency of arenicin-1. Therefore, the present study suggests that arenicin-1 exerts its fungicidal effect by disrupting fungal phospholipid membranes.  相似文献   

12.
Piscidin 2 (P2), a 22-residue cationic peptide isolated from the mast cells of hybrid striped bass, has potent antibacterial activities. However, its antifungal properties are not completely understood. In the current study, we investigated the antifungal effects and mode of action of P2. P2 exhibited potent antifungal activity against human pathogenic fungi. To understand the fungicidal properties of P2, we focused on a membrane-active mechanism of the peptide by in vivo and in vitro testing. Flow cytometric analysis using bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] and protoplast regeneration experiments showed that P2 caused fungal membrane damage. Furthermore, fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed that P2 created pores in fungal membranes. These results were confirmed with dye leakage tests by using liposomes composed of phosphatidylcholine/phosphatidylserine (3:1, w/w), which mimicked fungal membranes. The present study indicated that P2 exerts its fungicidal effects by perturbing membrane activities.  相似文献   

13.
In Saccharomyces cerevisiae, Avt3p and Avt4p mediate the extrusion of several amino acids from the vacuolar lumen into the cytosol. SpAvt3p of Schizosaccharomyces pombe, a homologue of these vacuolar amino acid transporters, has been indicated to be involved in spore formation. In this study, we confirmed that GFP-SpAvt3p localized to the vacuolar membrane in S. pombe. The amounts of various amino acids increased significantly in the vacuolar pool of avt3Δ cells, but decreased in that of avt3 +-overexpressing avt3Δ cells. These results suggest that SpAvt3p participates in the vacuolar compartmentalization of amino acids in S. pombe. To examine the export activity of SpAvt3p, we expressed the avt3 + gene in S. cerevisiae cells. We found that the heterologously overproduced GFP-SpAvt3p localized to the vacuolar membrane in S. cerevisiae. Using the vacuolar membrane vesicles isolated from avt3 +-overexpressing S. cerevisiae cells, we detected the export activities of alanine and tyrosine in an ATP-dependent manner. These activities were inhibited by the addition of a V-ATPase inhibitor, concanamycin A, thereby suggesting that the activity of SpAvt3p is dependent on a proton electrochemical gradient generated by the action of V-ATPase. In addition, the amounts of various amino acids in the vacuolar pools of S. cerevisiae cells were decreased by the overproduction of SpAvt3p, which indicated that SpAvt3p was functional in S. cerevisiae cells. Thus, SpAvt3p is a vacuolar transporter that is involved in the export of amino acids from S. pombe vacuoles.  相似文献   

14.
The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA3 was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.  相似文献   

15.
《Phytomedicine》2014,21(4):435-442
We tested the hypothesis that alkamides from Echinacea exert antifungal activity by disrupting the fungal cell wall/membrane complex. Saccharomyces cerevisiae cells were treated separately with each of seven synthetic alkamides found in Echinacea extracts. The resulting cell wall damage and cell viability were assessed by fluorescence microscopy after mild sonication. Membrane disrupting properties of test compounds were studied using liposomes encapsulating carboxyfluorescein. Negative controls included hygromycin and nourseothricin (aminoglycosides that inhibit protein synthesis), and the positive control used was caspofungin (an echinocandin that disrupts fungal cell walls). The results show that yeast cells exposed to sub-inhibitory concentrations of each of the seven alkamides and Echinacea extract exhibit increased frequencies of cell wall damage and death that were comparable to caspofungin and significantly greater than negative controls. Consistent with effects of cell wall damaging agents, the growth inhibition by three representative alkamides tested and caspofungin, but not hygromycin B, were partially reversed in sorbitol protection assays. Membrane disruption assays showed that the Echinacea extract and alkamides have pronounced membrane disruption activity, in contrast to caspofungin and other controls that all had little effect on membrane stability. A Quantitative Structure-Activity Relationship (QSAR) analysis was performed to study the effect of structural substituents on the antifungal activity of the alkamides. Among the set studied, diynoic alkamides showed the greatest antifungal and cell wall disruption activities while an opposite trend was observed in the membrane disruption assay where the dienoic group was more effective. We propose that alkamides found in Echinacea act synergistically to disrupt the fungal cell wall/membrane complex, an excellent target for specific inhibition of fungal pathogens. Structure-function relationships provide opportunities for synthesis of alkamide analogs with improved antifungal activities.  相似文献   

16.
Aims: To study the antifungal activities of a prepared food‐grade dilution‐stable microemulsion against Aspergillus niger. Methods and Results: Results from the antifungal activity on solid medium by agar dilution method showed that the microemulsion caused complete growth inhibition at 2000 ppm, and at 1000 ppm, showed 55% growth inhibition after 4 days of incubation and a delay of conidiation by 1 day compared with controls. Results from the antifungal activity in liquid medium by broth dilution method showed that the growth of A. niger was completely inhibited when a liquid medium containing 106 spores per ml was treated with 500 ppm of microemulsion, which was determined by minimum fungicidal concentration. Study of fungicidal kinetics showed that more than 99% of viable spores were killed within 15 min. These antifungal activities were confirmed by scanning electron microscopy, light microscopy and increased Ca+2, K+ and Mg+2 leakages. Conclusions: The results suggest that the prepared microemulsions are effective antifungal systems with excellent growth inhibition and sporicidal activities, and indicate that their antifungal activity may be to the result of the disruption and dysfunction of A. niger cell walls and biological membranes. Significance and Impact of the Study: This study suggests the potential use of food‐grade dilution‐stable microemulsions for antifungal use in the food and pharmaceutical industries.  相似文献   

17.
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.  相似文献   

18.
The plasma membrane H+-ATPase pump (Pma1p) has been proposed as a viable target for antifungal drugs since this high capacity proton pump plays a critical role in the intracellular regulation of pH and in nutrient uptake of yeast and other fungi. In recent years, this and other laboratories have verified that the antifungal activity of 2-phenylbenzisoselenazol-3(2H)-one, an organoselenium compound commonly referred to as ebselen (1), stems, at least in part, from its inhibitory action on the fungal Pma1p. In the present study, the antifungal efficacy of 2-(3-pyridinyl)-benzisoselenazol-3(2H)-one (2) and 2-phenylbenzisoselenazol-3(2H)-one 1-oxide (3), two ebselen analogs, was evaluated using a strain of S. cerevisiae and compared against that of 1. In addition, the study also examined the inhibitory potential of these three compounds toward the Pma1p of S. cerevisiae. Based on mean IC50 values, the antifungal potency was found to decrease in the order 3?>?1?>?2. However, in terms of inhibitory action on Pma1p, the potency decreased in the order 1?>?3?>?2. The magnitude of these activities appears to be correlated with the corresponding log P values, with compound 2 being the most hydrophilic and the least active of the three.  相似文献   

19.
P852, a novel cyclic peptide isolated from Bacillus amyloliquefaciens L-H15, showed potent antifungal activity against several major plant fungal pathogens including Fusarium oxysporum. To elucidate the antifungal mechanism, the impact of P852 on the cell morphology and membrane permeabilization of F. oxysporum was studied. By applying electron microscopy and fluorescent techniques, we showed that P852 treatment caused the morphological change of F. oxysporum cells and disrupted its cell structure, including formation of blebs, broken hyphae, deformation of membrane, intracellular organization disruption, pore formation, and cell lysis. Our findings provide insights into the mode of action of P852, which laying a foundation to develop P852 as a novel antifungal agent to control plant fungal pathogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号