首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brucellae are intracellular bacterial pathogens that cause Brucellosis, bringing great economic burdens to developing countries. The pathogenic mechanisms of Brucella are still poorly understood. Earlier immune response plays an important role in the Brucella infection. Phosphoglyceromutase (PGM) and dihydrodipicolinate reductase (DapB) were cloned, expressed, purified, and their immunocompetence was analyzed. Cytokines were detected by murine macrophages (RAW 264.7) and splenocytes that stimulated with the two recombinant proteins. The immune responses were analyzed by ELISA from mice with the two recombinant proteins immunized. TNF-α, IL-6 and IL-8 were produced in stimulated RAW 264.7 cells and splenocytes. Th1-type cytokines, IFN-γ and IL-2, induced in RAW 264.7 cells and splenocytes were higher then Th2-type cytokines, IL-4 and IL-5. Th2-related immune response was induced in splenocytes obtained 35 days after mice immunized with the two proteins. The production of IgG1 was higher than IgG2a in immunized mice. Taken together, our results demonstrated that the two proteins could induce Th1 and Th2-type immune responses in vivo and in vitro.  相似文献   

2.
Hizikia fusiforme is a commonly used food that possesses potent anti-bacterial, anti-fungal, and anti-inflammatory activities. The immunostimulatory activities of aqueous extract of Hizikia fusiforme (HFAE) in RAW 264.7 macrophages and whole spleen cells were investigated. HFAE activated RAW 264.7 macrophages to produce cytokines such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in a dose-dependent manner. In addition, HFAE induced the mRNA expression of TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophages. Moreover, HFAE stimulated proliferation of whole spleen cells and reference mitogen. Taken together, the results demonstrate that HFAE potently activates the immune function by regulating NO, TNF-α, IL-1β, and IL-6 in RAW 264.7 macrophage and promoting spleen cell proliferation.  相似文献   

3.
Although document studies (including ours) have been reported the achieved in vitro osteoclastic cellular model establishment from the RAW264.7 cell lineage, there was no study directly reported that American Type Culture Collection (ATCC) cell bank has various RAW264.7 cell lineages. Besides that, for our knowledge there was only one study compared the two different RAW264.7TIB-71 and RAW264.7CRL-2278 cell lineages for their osteoclastic differentiation, and they concluded that the RAW264.7CRL-2278 demonstrated to generate much osteoclast than RAW264.7TIB-71. However, on the contrary to their results we noticed the fusion of RAW264.7TIB-71 in our previous studies was much compromising. Therefore, we try to explore the two cell lineages for their properties in osteoclastic differentiation with an in-depth cellular cytoskeletal study. Our current study has showed that comparing to the RAW264.7CRL-2278, RAW264.7TIB-71 demonstrated a much higher efficacies for RANKL-stimulated osteoclastic differentiation. Besides that, in our depth cytoskeletal studies, we found that the RANKL-induced RAW264.7TIB-71 cells could finally differentiate into mature osteoclasts. However, regardless the various pre-treatment conditions, there was no mature osteoclast formed in RANKL-induced RAW264.7CRL-2278 cell lineage.  相似文献   

4.
5.

Background and Aim

Increasing evidence has indicated a close association of host-gut flora metabolic interaction with obesity. Flos Lonicera, a traditional herbal medicine, is used widely in eastern Asia for the treatment of various disorders. The aim of this study was to evaluate whether unfermented or fermented formulations of Flos Lonicera could exert a beneficial impact to combat obesity and related metabolic endotoxemia.

Methods

Obesity and metabolic endotoxemia were induced separately or together in rats through feeding a eight-week high fat diet either alone (HFD control group) or in combination with a single LPS stimulation (intraperitoneal injection, 0.75 mg/kg) (LPS control group). While, the mechanism of action of the Lonicera formulations was explored in vitro using RAW 264.7 and HCT 116 cell lines as models.

Results

In cell-based studies, treatment with both unfermented Flos Lonicera (UFL) and fermented Flos Lonicera (FFL) formulations resulted in suppression of LPS-induced NO production and gene expression of vital proinflammatory cytokines (TNF-α, COX-2, and IL-6) in RAW 264.7 cells, reduced the gene expression of zonula occludens (ZO)-1 and claudin-1, and normalized trans epithelial electric resistance (TEER) and horseradish peroxidase (HRP) flux in LPS-treated HCT-116 cells. In an animal study, treatment of HFD as well as HFD+LPS groups with UFL or FFL resulted in a notable decrease in body and adipose tissue weights, ameliorated total cholesterol, HDL, triglyceride, aspartate transaminase and endotoxin levels in serum, reduced the urinary lactulose/mannitol ratio, and markedly alleviated lipid accumulation in liver. In addition, exposure of HFD as well as HFD+LPS groups with UFL or FFL resulted in significant alteration of the distribution of intestinal flora, especially affecting the population of Akkermansia spp. and ratio of Bacteroidetes and Firmicutes.

Conclusion

This evidence collectively demonstrates that Flos Lonicera ameliorates obesity and related metabolic endotoxemia via regulating distribution of gut flora and gut permeability.  相似文献   

6.
7.
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.  相似文献   

8.
This study aimed to investigate if food components that exert anti-inflammatory effects may be used for inflammatory disorders by examining alfalfa sprout ethyl acetate extract (ASEA). The cytokine profile and life span of BALB/c mice with acute inflammation after intra-peritoneal (ip) injection of 15 mg/kg BW lipopolysaccharide (LPS) were determined. The results showed that the life span of LPS-induced inflammatory mice were negatively correlated with serum levels of TNF-α, IL-6, and IL-1β at 9 hr after LPS-injection, which indicated that suppressing these cytokines in the late phase of inflammation may be beneficial for survival. The in vitro experiment then showed that ASEA significantly reduced IL-6 and IL-1β production and the NF-κB trans-activation activity of mitogen-stimulated RAW264.7 cells. To further evaluate the anti-inflammatory effects of ASEA in vivo, BALB/c mice were tube-fed with 25 mg ASEA/kg BW/day in 50 μl sunflower oil, while the control and PDTC (pyrrolidine dithiocarbamate, an anti-inflammatory agent) groups were tube-fed with 50 μl sunflower oil/day only. After one week of tube-feeding, the PDTC group was injected with 50 mg/kg BW PDTC and one hour later, all of the mice were injected with 15 mg/kg BW LPS. The results showed that the ASEA and PDTC groups had significantly lower serum TNF-α, IL-6, and IL-1β levels at 9 hr after LPS challenge, and significantly higher survival rates than the control group. This study suggests that ASEA supplementation can suppress the production of pro-inflammatory cytokines and alleviate acute inflammatory hazards.  相似文献   

9.
Protective efficiency of a combination of four recombinant Brucella abortus (B. abortus) proteins, namely, ribosomal protein L7/L12, outer membrane protein (OMP) 22, OMP25 and OMP31, was evaluated as a combined subunit vaccine (CSV) against B. abortus infection in RAW 264.7 cell line and murine model. Four proteins were cloned, expressed and purified, and their immunocompetence was analysed. BALB/c mice were immunized subcutaneously with single subunit vaccines (SSVs) or CSV. Cellular and humoral immune responses were determined by ELISA. Results of immunoreactivity showed that these four recombinant proteins reacted with Brucella-positive serum individually but not with Brucella-negative serum. A massive production of IFN-γ and IL-2 but low degree of IL-10 was observed in mice immunized with SSVs or CSV. In addition, the titres of IgG2a were heightened compared with IgG1 in SSV- or CSV-immunized mice, which indicated that SSVs and CSV induced a typical T-helper-1-dominated immune response in vivo. Further investigation of the CSV showed a superior protective effect in mice against brucellosis. The protection level induced by CSV was significantly higher than that induced by SSVs, which was not significantly different compared with a group immunized with RB51. Collectively, these antigens of Brucella could be potential candidates to develop subunit vaccines, and the CSV used in this study could be a potential candidate therapy for the prevention of brucellosis.  相似文献   

10.
Hermetia illucens-3 (HI-3), an active insect antimicrobial peptide extracted from H. illucens larvae, exerts antibacterial and anticancer activity. However, the inflammatory effects and their relative molecular mechanisms remain unclear. To explore the inflammatory effects of HI-3, an inflammatory model was induced using 1 ng/mL LPS in RAW264.7 cells. The cell viability and phagocytosis of LPS-stimulated RAW264.7 cells were then detected after HI-3 treatment. Furthermore, the antioxidant activity, the levels of proinflammatory cytokines, and the expression levels of both p65 and inhibitor of nuclear factor kappa B (IκB) were measured. Results showed that HI-3 could inhibit the differentiation, proliferation, phagocytosis, and antioxidant ability, as well as the secretion and messenger RNA expression levels of IL-6, TNF-α, and IL-1β of LPS-induced RAW264.7 cells in a dose-dependent manner. At the same time, the level of the anti-inflammatory cytokine IL-10 was increased after HI-3 treatment. Western blotting results showed that HI-3 suppressed LPS-induced p65 and IκB activation in a dose-dependent manner. Therefore, HI-3 exerts its anti-inflammatory effect by inhibiting the expression of proinflammatory cytokines and the activation of p65 and IκB, which indicated that HI-3 could be a promising therapeutic medicine for inflammation.  相似文献   

11.

Background

AMP-activated protein kinase (AMPK) is an important enzyme in regulation of cellular energy homeostasis. We have previously shown that AMPK activation by 5-aminoimidazole-4-carboxamide (AICAR) results in suppression of immune responses, indicating the pivotal role of AMPK in immune regulation. However, the cellular mechanism underpinning AMPK inhibition on immune response remains largely to be elucidated. The study aimed to investigate the effects of AMPK inhibition on reactive oxygen species (ROS)-nuclear factor κB (NFκB) signaling and endotoxemia-induced liver injury.

Methodology/Principal Findings

RAW 264.7 cells were pretreated with AMPK activator or inhibitor, followed by LPS challenge. In addition, LPS was injected intraperitoneally into mice to induce systemic inflammation. The parameters of liver injury and immune responses were determined, and survival of mice was monitored respectively. LPS challenge in RAW 264.7 cells resulted in AMPK activation which was then inhibited by compound C treatment. Both AMPK activation by AICAR or inhibition by compound C diminished LPS-induced ROS generation, inhibited phosphorylation of IKK, IκB, and NFκB p65, and consequently, decreased TNF production of RAW 264.7 cells. AICAR or compound C treatment decreased ALT, AST, and TNF levels in serum, reduced CD68 expression and MPO activity in liver tissue of mice with endotoxemia. Moreover, AICAR or compound C treatment improved survival of endotoxemic mice.

Conclusions

AICAR or compound C treatment attenuates LPS-induced ROS-NFκB signaling, immune responses and liver injury. Strategies to activate or inhibit AMPK signaling may provide alternatives to the current clinical approaches to inhibit immune responses of endotoxemia.  相似文献   

12.
The biological activity of Mastixia arborea (MA) relates to inflammation, but the underlying mechanisms are largely unknown. We confirmed the anti-inflammatory effects of a methanol extract of MA extract on lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells and carrageenan-induced mice paw edema. The MA extract significantly inhibited nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and IL-6 production in LPS-stimulated RAW264.7 cells. In vitro expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was suppressed by the extract. The extract attenuated acute inflammatory responses in carrageenan-induced mice paw edema. A mechanism study indicated that translocation of the NF-κB (p65) subunit into the nucleus and phosphorylation of ERK and JNK were inhibited by the extract. These results indicate that the extract is an effective suppressor of the inflammatory response, blocking the phosphorylation of ERK and JNK and the translocation of NF-κB in macrophages, thereby producing an anti-inflammatory effect in vivo.  相似文献   

13.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   

14.

Background

Sepsis is a potentially deadly disease that often is caused by gram-positive bacteria, in particular Staphylococcus aureus (S. aureus). As there are few effective therapies for sepsis, increased basic knowledge about factors predisposing is needed.

Methodology/Principal Findings

The purpose of this study was to study the effect of Western diet on mortality induced by intravenous S. aureus inoculation and the immune functions before and after bacterial inoculation. Here we show that C57Bl/6 mice on high-fat diet (HFD) for 8 weeks, like genetically obese Ob/Ob mice on low-fat diet (LFD), have increased mortality during S. aureus-induced sepsis compared with LFD-fed C57Bl/6 controls. Bacterial load in the kidneys 5–7 days after inoculation was increased 10-fold in HFD-fed compared with LFD-fed mice. At that time, HFD-fed mice had increased serum levels and fat mRNA expression of the immune suppressing cytokines interleukin-1 receptor antagonist (IL-1Ra) and IL-10 compared with LFD-fed mice. In addition, HFD-fed mice had increased serum levels of the pro-inflammatory IL-1β. Also, HFD-fed mice with and without infection had increased levels of macrophages in fat. The proportion and function of phagocytosing granulocytes, and the production of reactive oxygen species (ROS) by peritoneal lavage cells were decreased in HFD-fed compared with LFD-fed mice.

Conclusions

Our findings imply that chronic HFD disturb several innate immune functions in mice, and impairs the ability to clear S. aureus and survive sepsis.  相似文献   

15.

Background

Macrophage-derived lymphatic endothelial cell progenitors (M-LECPs) contribute to new lymphatic vessel formation, but the mechanisms regulating their differentiation, recruitment, and function are poorly understood. Detailed characterization of M-LECPs is limited by low frequency in vivo and lack of model systems allowing in-depth molecular analyses in vitro. Our goal was to establish a cell culture model to characterize inflammation-induced macrophage-to-LECP differentiation under controlled conditions.

Methodology/Principal Findings

Time-course analysis of diaphragms from lipopolysaccharide (LPS)-treated mice revealed rapid mobilization of bone marrow-derived and peritoneal macrophages to the proximity of lymphatic vessels followed by widespread (∼50%) incorporation of M-LECPs into the inflamed lymphatic vasculature. A differentiation shift toward the lymphatic phenotype was found in three LPS-induced subsets of activated macrophages that were positive for VEGFR-3 and many other lymphatic-specific markers. VEGFR-3 was strongly elevated in the early stage of macrophage transition to LECPs but undetectable in M-LECPs prior to vascular integration. Similar transient pattern of VEGFR-3 expression was found in RAW264.7 macrophages activated by LPS in vitro. Activated RAW264.7 cells co-expressed VEGF-C that induced an autocrine signaling loop as indicated by VEGFR-3 phosphorylation inhibited by a soluble receptor. LPS-activated RAW264.7 macrophages also showed a 68% overlap with endogenous CD11b+/VEGFR-3+ LECPs in the expression of lymphatic-specific genes. Moreover, when injected into LPS- but not saline-treated mice, GFP-tagged RAW264.7 cells massively infiltrated the inflamed diaphragm followed by integration into 18% of lymphatic vessels.

Conclusions/Significance

We present a new model for macrophage-LECP differentiation based on LPS activation of cultured RAW264.7 cells. This system designated here as the “RAW model” mimics fundamental features of endogenous M-LECPs. Unlike native LECPs, this model is unrestricted by cell numbers, heterogeneity of population, and ability to change genetic composition for experimental purposes. As such, this model can provide a valuable tool for understanding the LECP and lymphatic biology.  相似文献   

16.
Objectives: To evaluate the effects of administration of Bifidobacterium pseudocatenulatum CECT 7765 on metabolic and immune alterations in obese mice. Design and Methods: Adult male wild‐type C57BL‐6 mice were fed a standard diet or high‐fat diet (HFD), supplemented or not with B. pseudocatenulatum CECT 7765 for 7 weeks. The assessments included biochemical and immunological parameters, insulin resistance, glucose tolerance, histology of liver, white‐adipose and intestinal tissues, immunocompetent cell functions, and microbiota‐related features. Results: B. pseudocatenulatum CECT 7765 reduced serum cholesterol, triglyceride, and glucose levels and decreased insulin resistance and improved glucose tolerance in obese mice. This strain reduced serum levels of leptin, interleukin (IL)‐6 and monocyte chemotactic protein‐1, while increased those of IL‐4 in HFD‐fed mice. B. pseudocatenulatum CECT7765 reduced liver steatosis and the number of larger adipocytes and number of fat micelles in enterocytes of obese mice. The strain also improved the function of macrophages and dendritic cells in relation to phagocytosis, cytokine production, and induction of T‐lymphocyte proliferation. The strain administration increased bifidobacteria and reduced enterobacteria and the inflammatory properties of the gut content in HFD‐fed mice. Conclusion: B. pseudocatenulatum CECT 7765 was shown to ameliorate both metabolic and immunological dysfunctions related to obesity in HFD‐fed mice.  相似文献   

17.
18.
Interleukin-17 (IL-17) is a cytokine secreted primarily by TH-17 cells that can stimulate the development of osteoclasts (osteoclastogenesis) in the presence of osteoblasts. IL-17, through osteoblasts, has indirect effects on the expression of bone resorption-related enzymes in osteoclasts, which have not been well clarified. Here, using MC3T3-E1 cells and RAW264.7 cells as osteoblasts and osteoclast precursors, we aimed to clarify these effects of IL-17A. MC3T3-E1 cells were cultured in the presence or absence of IL-17A for 72 h and the conditioned media collected (in the presence of soluble receptor activator of NF-кB ligand) and used to culture RAW264.7 cells. To assess osteoclast differentiation, adherent cells were fixed and stained for tartrate-resistant acid phosphatase (TRAP). Our analyses demonstrated that the number of TRAP-positive multinucleated cells increases after 3 days of culture in conditioned medium from IL-17A-treated cells compared to untreated controls. In addition, we observed that the levels of cathepsin K and MMP-9 increase in the conditioned medium from IL-17A-treated cells, whereas CA II expression levels remain unaffected. PGE2 production from MC3T3-E1 cells increased in the presence of IL-17A. Celecoxib, a specific inhibitor of cyclooxygenase-2 (COX-2), blocked both the IL-17A-stimulated increase in TRAP-positive multinucleated cells and the expression of cathepsin K and MMP-9. Furthermore, when MC3T3-E1 cells were transformed with small interfering RNA to silence COX-2 expression before IL-17A treatment, the resulting conditioned medium was less effective at inducing cathepsin K and MMP-9 expression in RAW264.7 cells. These results suggest that IL-17A induces the differentiation and function of osteoclasts via celecoxib-blocked prostaglandin, mainly PGE2, in osteoblasts.  相似文献   

19.
Eph受体是酪氨酸蛋白激酶受体家族中最大的亚家族,ephrin(Eph受体相互作用蛋白)是其配体,它们是膜结合蛋白,相互依赖进行信号转导.内居蛋白(syntenin)与Pick1属于PDZ结构域(PSD-95/Dlg-/Zo-1 domain)蛋白,报道称能与ephrinB配体结合,但是否受Eph受体调控尚未见报道.以RAW264.7细胞株为研究对象,通过蛋白质印迹及/或免疫荧光分析显示RAW264.7细胞经RANKL诱导的破骨细胞表达ephrinB2、内居蛋白(syntenin)和Pick1三个蛋白质.将提前成簇的可溶性EphB4蛋白加入培养液,与ephrinB2配体结合,用来研究EphB4/ephrinB2逆向信号对syntenin和Pick1表达水平变化的影响.免疫印迹及Real-time RT-PCR分析结果显示,在EphB4-Fc实验组中Pick1的蛋白质及mRNA水平都有明显增加,然而在EphB4-Fc实验组与Fc对照组别间syntenin的蛋白质及mRNA水平未见明显变化.免疫共沉淀结果显示,syntenin和Pick1不能与ephrinB2共沉淀.以上结果初步探索了体外破骨细胞分化过程中,EphB4/ephrinB2逆向信号对PDZ结构域蛋白(ephrinB2配体潜在的下游信号分子)表达变化的调控.  相似文献   

20.
The role of adaptive immunity in obesity‐associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T‐cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4–22 weeks of a high‐fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, interferon‐γ (IFN‐γ), or regulated upon activation, normal T‐cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFN‐γ and RANTES gene expression were detected by 20–22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD‐induced T‐cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin‐12 (IL‐12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN‐γ secretion from phorbol myristate acetate (PMA)/ionophore‐stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T‐cell enrichment and IFN‐γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN‐γ production suggests the contribution of CD4+ and/or CD8+ effectors to cell‐mediated immune responses promoting HFD‐induced AT inflammation and IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号