首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ku L  Wei X  Zhang S  Zhang J  Guo S  Chen Y 《PloS one》2011,6(6):e20621

Background

Modifying plant architecture to increase photosynthesis efficiency and reduce shade avoidance response is very important for further yield improvement when crops are grown in high density. Identification of alleles controlling leaf angle in maize is needed to provide insight into molecular mechanism of leaf development and achieving ideal plant architecture to improve grain yield.

Methodology/Principal Findings

The gene cloning was done by using comparative genomics, and then performing real-time polymerase chain reaction (RT-PCR) analysis to assay gene expression. The gene function was validated by sequence dissimilarity analysis and QTL mapping using a functional cleaved amplified polymorphism (CAP).

Conclusions

The leaf angle is controlled by a major quantitative trait locus, ZmTAC1 (Zea mays L. Leaf Angle Control 1). ZmTAC1 has 4 exons encoding a protein with 263 amino acids, and its domains are the same as those of the rice OsTAC1 protein. ZmTAC1 was found to be located in the region of qLA2 by using the CAP marker and the F2:3 families from the cross between Yu82 and Shen137. Real-time PCR analysis revealed ZmTAC1 expression was the highest in the leaf-sheath pulvinus, less in the leaf and shoot apical meristem, and the lowest in the root. A nucleotide difference in the 5′-untranslated region (UTR) between the compact inbred line Yu82 (“CTCC”) and the expanded inbred line Shen137 (“CCCC”) influences the expression level of ZmTAC1, further controlling the size of the leaf angle. Sequence verification of the change in the 5′-UTR revealed ZmTAC1 with “CTCC” was present in 13 compact inbred lines and ZmTAC1 with “CCCC” was present in 18 expanded inbred lines, indicating ZmTAC1 had been extensively utilized in breeding with regard to the improvement of the maize plant architecture.  相似文献   

2.
The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.  相似文献   

3.
We conducted a comparative anatomical study of the petiole of 16 taxa belonging to the tribe Sorbarieae (Rosaceae) (Adenostoma, 2 spp.; Chamaebatiaria, 1 sp.; Sorbaria, 6 spp., 3 vars., and 1 forma; and Spiraeanthus, 1 sp.) and the related genus Lyonothamnus (1 sp. and 1 ssp.). The distal, medial and proximal regions of petioles were transversely sectioned using conventional embedding and staining methods. Cuticles, crystals, trichomes and pericyclic fiber patterns were observed and studied. Three types of vascular nodal patterns were recognized: Type 1 was seen in Chamaebatiaria, Lyonothamnus, and Spiraeanthus (simple‐trace nodal pattern with slightly curved or U‐shaped vascular bundle); type 2 was found in Adenostoma (multiple‐traces nodal pattern with free vascular bundles); and type 3 was unique to Sorbaria (bundles fused to form a siphonostele nodal pattern). Some petiolar anatomical characteristics (e.g. cuticles, crystals, trichomes, vascular nodal pattern, and pericyclic fiber patterns) were found to provide useful information for taxonomic studies within Sorbarieae. On the basis of these characteristics, a dichotomous key for identification at the generic/specific level is provided. We also report a structural change in the vascular bundles from the stem‐leaf transitional zone to the leaf medial zone.  相似文献   

4.
5.
Sucrose in the free space of translocating maize leaf bundles   总被引:1,自引:1,他引:0       下载免费PDF全文
Following exposure of portions of mature maize (Zea mays L.) leaf strips to 14CO2, xylem exudate from the leaf strips contained [14C]sucrose. Sucrose was the only sugar in the xylem exudate which was obtained from the cut surface of the leaf strips by reducing the external pressure. The sucrose found in the xylem exudate apparently was obtained from the free space of the vascular bundles, its concentration amounting up to 0.25%. When [14C]glucose or [14C]fructose was supplied in the dark to one end of a maize leaf strip, each was taken up by the xylem, and transported to the opposite end. Xylem exudate from such leaf strips contained 14C-labeled sucrose in addition to the 14C-labeled hexose. The results of this study support the view that sucrose is loaded into the companion cell-sieve tube complexes from the apoplast of the vascular bundles in the maize leaf.  相似文献   

6.
In this study, the uses of the mutated genes, upreg1 and upreg2, encoding upregulated ADP-glucose pyrophosphorylase (AGPase) large subunits with increased enzymatic activity, to improve crop yield productivity was evaluated in vitro and in planta. For in vitro examination, wild type and upregs were co-expressed with three different AGPase small subunit genes from potato and perilla to produce nine AGPase isoforms. In kinetic experiments, 3-Phosphoglycerate increased the V max and decreased the K M for the recombinant AGPase. Regardless of the specific small subunit, Upreg-type AGPases had much larger increases in enzymatic activity with concomitant decreases in values as compared to the wild type enzyme. Transformation of lettuce with the upreg1 gene altered the regulatory properties of leaf AGPase. AGPases from transgenic lettuce showed greater 3-PGA activation and lower Pi inhibition than was observed for wild type AGPase. Fresh weights of the aerial parts of transgenic plants were larger than non-transgenic controls. Based on these results, upreg mutant genes could be used for the genetic improvement of plant AGPases other than potato and effectively increase crop yield productivity.  相似文献   

7.
8.
The loading and transport functions of vascular bundles in maize (Zea mays L.) leaf strips were investigated by microautoradiography after application of 14CO2. The concentrations of 14C-contents in thin-walled sieve tubes of individual bundles in the loading and transport regions were determined by digital image analysis of silver-grain density over the sieve tubes and compared. In the loading region, relatively high concentrations of 14C-contents were found in the thin-walled sieve tubes of small bundles and in the small, thin-walled sieve tubes of the intermediate bundles; the concentration of 14C-label in large bundles was very low. In the transport region, at a transport distance of 2 cm, all of the small bundles contained 14C-assimilates, but generally less than the same bundles did in the loading region; by comparison, at that distance intermediate and large bundles contained two-to threefold more 14C-assimilates than the same bundles in the loading region. The lateral transfer of assimilates from smaller to larger bundles via transverse veins could be demonstrated directly in microautoradiographs. A reverse transport from larger to smaller bundles was not found. At a transport distance of 4 cm, all large and intermediate bundles were 14C-labeled, but many of the small bundles were not. Although all longitudinal bundles were able to transport 14C-asimilates longitudinally down the blade, it was the large bundles that were primarily involved with longitudinal transport and the small bundles that were primarily involved with loading.  相似文献   

9.
Comparative studies of the nodal and vascular anatomy in the Cyatheaceae are discussed as they relate to the taxonomy and phylogeny of the family. There is in the Cyatheaceae (excluding Metaxya and Lophosoria) a basic nodal pattern consisting of four major phases of leaf trace separations. Abaxial traces arise from the leaf gap margins, and the last abaxial traces from each side of the gap are larger and undergo numerous divisions. Distally adaxial traces separate from the gap margins, and the last adaxial traces are usually larger and undergo multiple divisions. In addition, medullary bundles frequently become petiole strands of the adaxial arc in the petiole. Rarely, cortical bundles form petiole strands in the abaxial arc in the petiole. Leaf gaps of the squamate genera of the Cyatheaceae are fusiform and possess prominent lateral constrictions which result from medullary bundle fusions and the separation of leaf traces. A characteristic petiole pattern is found in all members of the Cyatheaceae. There is an increase in the complexity of the petiole vascular tissue which results in a gradation from the undivided strand in Metaxya, to the three-parted petiole pattern in Lophosoria, and finally to the much-dissected petiole vascular tissue in the advanced genera. Nodal and vascular anatomy data basically support Tryon's phyletic scheme for the family. The Sphaeropteris-Alsophila-Nephelea line shows certain tendencies toward increased complexity of nodal and vascular anatomy, whereas the Trichipteris-Cyathea-Cnemidaria line shows the same anatomical and morphological characters in a direction of increased simplification or reduction.  相似文献   

10.
PCR detection, quantitative real-time PCR (q-RTPCR), outdoor insect resistance, and disease resistance identification were carried out for the detection of genetic stability and disease resistance through generations (T2, T3, and T4) in transgenic maize germplasms (S3002 and 349) containing the bivalent genes (insect resistance gene Cry1Ab13-1 and disease resistance gene NPR1) and their corresponding wild type. Results indicated that the target genes Cry1Ab13-1 and NPR1 were successfully transferred into both germplasms through tested generations; q-PCR confirmed the expression of Cry1Ab13-1 and NPR1 genes in roots, stems, and leaves of tested maize plants. In addition, S3002 and 349 bivalent gene-transformed lines exhibited resistance to large leaf spots and corn borer in the field evaluation compared to the wild type. Our study confirmed that Cry1Ab13-1 and NPR1 bivalent genes enhanced the resistance against maize borer and large leaf spot disease and can stably inherit. These findings could be exploited for improving other cultivated maize varieties.  相似文献   

11.
12.
A spontaneous maize mutant, brittle stalk-2 (bk2-ref), exhibits dramatically reduced tissue mechanical strength. Reduction in mechanical strength in the stalk tissue was highly correlated with a reduction in the amount of cellulose and an uneven deposition of secondary cell wall material in the subepidermal and perivascular sclerenchyma fibers. Cell wall accounted for two-thirds of the observed reduction in dry matter content per unit length of the mutant stalk in comparison to the wildtype stalk. Although the cell wall composition was significantly altered in the mutant in comparison to the wildtype stalks, no compensation by lignin and cell wall matrix for reduced cellulose amount was observed. We demonstrate that Bk2 encodes a Cobra-like protein that is homologous to the rice Bc1 protein. In the bk2-ref gene, a 1 kb transposon-like element is inserted in the beginning of the second exon, disrupting the open reading frame. The Bk2 gene was expressed in the stalk, husk, root, and leaf tissues, but not in the embryo, endosperm, pollen, silk, or other tissues with comparatively few or no secondary cell wall containing cells. The highest expression was in the isolated vascular bundles. In agreement with its role in secondary wall formation, the expression pattern of the Bk2 gene was very similar to that of the ZmCesA10, ZmCesA11, and ZmCesA12 genes, which are known to be involved in secondary wall formation. We have isolated an independent Mutator-tagged allele of bk2, referred to as bk2-Mu7, the phenotype of which is similar to that of the spontaneous mutant. Our results demonstrate that mutations in the Bk2 gene affect stalk strength in maize by interfering with the deposition of cellulose in the secondary cell wall in fiber cells.  相似文献   

13.
14.
15.
采用离析法和石蜡切片法对单芽狗脊营养器官进行形态解剖研究。结果表明:单芽狗脊叶为异面叶,上、下表皮细胞均为不规则型,仅下表皮有气孔器分布;叶柄维管束有2~6个,自叶柄基部向上至叶轴仅有2个较大的维管束;根状茎薄壁细胞之间有多个维管束散生分布,且富含丰富的淀粉粒;皮层在根的横切结构中占比较大,木质部的发育方式为外始式;单芽狗脊珠芽的发育过程分为三个阶段,珠芽原基的形成期、珠芽原基的分化期、成熟期。  相似文献   

16.
Five ab initio programs (FGENESH, GeneMark.hmm, GENSCAN, GlimmerR and Grail) were evaluated for their accuracy in predicting maize genes. Two of these programs, GeneMark.hmm and GENSCAN had been trained for maize; FGENESH had been trained for monocots (including maize), and the others had been trained for rice or Arabidopsis. Initial evaluations were conducted using eight maize genes (gl8a, pdc2, pdc3, rf2c, rf2d, rf2e1, rth1, and rth3) of which the sequences were not released to the public prior to conducting this evaluation. The significant advantage of this data set for this evaluation is that these genes could not have been included in the training sets of the prediction programs. FGENESH yielded the most accurate and GeneMark.hmm the second most accurate predictions. The five programs were used in conjunction with RT-PCR to identify and establish the structures of two new genes in the a1-sh2 interval of the maize genome. FGENESH, GeneMark.hmm and GENSCAN were tested on a larger data set consisting of maize assembled genomic islands (MAGIs) that had been aligned to ESTs. FGENESH, GeneMark.hmm and GENSCAN correctly predicted gene models in 773, 625, and 371 MAGIs, respectively, out of the 1353 MAGIs that comprise data set 2.these authors contributed equally to this work  相似文献   

17.
Developing longitudinal vascular bundles of the leaf blades of maize (Zea mays L. cv. W273) were examined with the transmission electron microscope to determine the frequency of plasmodesmata between the sieve tubes and their neighboring cells. Of particular interest were the protophloem sieve tubes, the first sieve tubes to mature in importing (all large and some intermediate) bundles. The protophloem sieve tubes, most of which lack companion cells, intergrade structurally with the thin-walled metaphloem sieve tubes. Both the protophloem sieve tubes and the thin-walled metaphloem sieve tubes and their companion cells (the sieve tube-companion cell complexes) are virtually isolated symplastically from the rest of the leaf, precluding a symplastic mechanism of phloem unloading in the leaf blade of maize.  相似文献   

18.
The anatomy and organization of the stem vascular system was analyzed in representative taxa of Nymphaea (subgenera Anecphya, Lotos, and Brachyceras). The stem vascular system consists of a series of concentric axial stem bundles from which traces to lateral organs depart. At the node each leaf is supplied with a median and two lateral leaf traces. At the same level a root trace supplies vascular tissue to adventitious roots borne on the leaf base. Flowers and vegetative buds occupy leaf sites in the genetic spiral and in the parastichies seen on the stem exterior. Certain leaves have flowers related to them spatially and by vascular association. Flowers (and similarly vegetative buds) are vascularized by a peduncle trace that arises from a peduncle fusion bundle located in the pith. The peduncle fusion bundle is formed by the fusion of vascular tissue derived from axial stem bundles that supply traces to certain leaves. The organization of the vascular system in the investigated taxa of Nymphaea is unique to angiosperms but similar to other subgenera of Nymphaea.  相似文献   

19.
20.
A β-glucosidase that cleaves the biologically inactive hormone conjugates cytokinin-O- and kinetin-N3-glucosides is encoded by the maize Zm-p60.1 gene. The expression of the Zm-p60.1 gene was analyzed by Northern blot analysis and in-situ hybridization. It was found that the expression levels of the Zm-p60.1-specific mRNA changed after pollination of carpellate inflorescences. The Zm-p60.1 cDNA was expressed in E. coli and antibodies were raised against this protein. An antibody was used to determine the tissue-specific localization of this protein. By in situ immunolocalization experiments, this protein was found to be located in cell layers below the epidermis and around the vascular bundles of the coleoptile. In the primary leaf, the Zm-p60.1 protein was detected in cells of the outermost cell layer and around the vascular tissue. In floral tissue, Zm-p60.1 was present in the glumes, the carpels and in the outer cell layer of the style. In coleoptiles, as determined by immuno-electronmicroscopy, the Zm-p60.1 protein was located exclusively in the plastids. Received: 11 August 1998 / Accepted: 30 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号