首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to feed an expanding world population poses one of the greatest challenges to mankind in the future. Accompanying the increased demand for food by the expected nine billion inhabitants of Earth in 2050 will be a continual decrease in arable land area, together with a decline in crop yield due to a variety of stresses. For these formidable challenges to be met, future crops should not only by high-yielding, but also stress-tolerant and disease-resistant. In this review, we highlight the importance of genetic engineering as an indispensable tool to generate just such future crops. We briefly discuss strategies and available tools for biotechnological crop improvement and identify selected examples of candidate genes that may be manipulated so that current biological maxima in yield may be surpassed by comfortable margins. Future prospects and the necessity for basic research aimed at identifying novel target genes are also discussed.  相似文献   

2.
随着人类社会的快速发展和对化石能源的不合理开采,化石能源整体可开采量锐减;另一方面,化石能源的大量使用造成日益凸显的环境污染问题,发展生物质能源对解决能源危机、促进社会可持续发展具有重要意义。囿于人口持续增长和粮食需求不断增加,发展能源植物的重要突破口在于大力开发不与粮食作物争地争水的干旱能源植物。因此,从能源植物概念及其意义入手,论述国内外干旱能源植物应用现状和在实际种植生产过程中存在的问题,综合分析适合作为干旱能源植物的新类型,进而提出干旱能源植物的应用策略。  相似文献   

3.
4.

Key message

Grain amaranth is an underutilized crop with high nutritional quality from the Americas. Emerging genomic and biotechnological tools are becoming available that allow the integration of novel breeding techniques for rapid improvement of amaranth and other underutilized crops.

Abstract

Out of thousands of edible plants, only three cereals—maize, wheat and rice—are the major food sources for a majority of people worldwide. While these crops provide high amounts of calories, they are low in protein and other essential nutrients. The dependence on only few crops, with often narrow genetic basis, leads to a high vulnerability of modern cropping systems to the predicted climate change and accompanying weather extremes. Broadening our food sources through the integration of so-called orphan crops can help to mitigate the effects of environmental change and improve qualitative food security. Thousands of traditional crops are known, but have received little attention in the last century and breeding efforts were limited. Amaranth is such an underutilized pseudocereal that is of particular interest because of its balanced amino acid and micronutrient profiles. Additionally, the C4 photosynthetic pathway and ability to withstand environmental stress make the crop a suitable choice for future agricultural systems. Despite the potential of amaranth, efforts of genetic improvement lag considerably behind those of major crops. The progress in novel breeding methods and molecular techniques developed in model plants and major crops allow a rapid improvement of underutilized crops. Here, we review the history of amaranth and recent advances in genomic tools and give a concrete perspective how novel breeding techniques can be implemented into breeding programs. Our perspectives are transferable to many underutilized crops. The implementation of these could improve the nutritional quality and climate resilience of future cropping systems.
  相似文献   

5.
水稻根系研究进展   总被引:6,自引:0,他引:6  
水稻(Oryza sativa)是我国最重要的粮食作物之一, 在保障国家持续的粮食供给中扮演着重要角色。根系作为水稻生长发育必不可少的器官, 间接地决定着水稻地上部产量、品质、抗逆及广适性等诸多农艺性状的表现。近年来, 随着水稻根系法的不断改进和图位克隆技术的完善及广泛应用, 水稻根系研究也取得了较大进展, 并已成功定位、分离、克隆了一些控制水稻根系的相关基因。该文从水稻根系法、相关性、基因定位、克隆及功能解析等层面综述了国内外水稻根系的研究进展, 并阐述了水稻根系研究存在的问题和今后研究的重点。  相似文献   

6.
7.
8.
Phenomics--technologies to relieve the phenotyping bottleneck   总被引:5,自引:0,他引:5  
Global agriculture is facing major challenges to ensure global food security, such as the need to breed high-yielding crops adapted to future climates and the identification of dedicated feedstock crops for biofuel production (biofuel feedstocks). Plant phenomics offers a suite of new technologies to accelerate progress in understanding gene function and environmental responses. This will enable breeders to develop new agricultural germplasm to support future agricultural production. In this review we present plant physiology in an 'omics' perspective, review some of the new high-throughput and high-resolution phenotyping tools and discuss their application to plant biology, functional genomics and crop breeding.  相似文献   

9.
Molecular biology, combined with Mendelian and quantitative genetics in quantitative trait locus (QTL) mapping and marker-assisted selection (MAS), provides powerful new tools to facilitate efficient genetic manipulation by plant breeders of complex traits such as drought tolerance and phosphorus (P) acquisition ability. This paper examines current opportunities for genetically manipulating the ability of crop plants to more efficiently acquire (i.e. access and take up) essential soil nutrients, using as examples P and several of the crops in the genetic improvement mandate of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) – chickpea (Cicer arietinum L.), groundnut (Arachis hypogaea L.), pearl millet [Pennisetum glaucum (L.) R. Br.], pigeonpea [Cajanus cajan(L.) Millsp.], and sorghum [Sorghum bicolor (L.) Moench]. It is concluded that for at least some of these important, but often academically and economically orphaned tropical food, forage and feed-grain crops, the genetic variation and molecular tools that we will need already exist or can be expected to become available in the very near future. With appropriate, targeted research, these tools can permit empirical exploration of the potential for marker-facilitated mapping and manipulation of major genes that can contribute to enhanced ability of these crops to acquire P from sources with limited availability. With these tools, delivery of new versions of currently popular high-yielding, high quality, disease resistant crop cultivars, having genetically improved ability to acquire P currently in soils but unavailable for crop growth, could take as little as five to seven years. Sustainable use of such improved cultivars would require their utilization as components of integrated soil fertility management systems.  相似文献   

10.

Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.

  相似文献   

11.
The further evolution of molecularly imprinted polymer science and technology necessitates the development of robust predictive tools capable of handling the complexity of molecular imprinting systems. A combination of the rapid growth in computer power over the past decade and significant software developments have opened new possibilities for simulating aspects of the complex molecular imprinting process. We present here a survey of the current status of the use of in silico-based approaches to aspects of molecular imprinting. Finally, we highlight areas where ongoing and future efforts should yield information critical to our understanding of the underlying mechanisms sufficient to permit the rational design of molecularly imprinted polymers.  相似文献   

12.
Plants are the world’s most consumed goods. They are of high economic value and bring many health benefits. In most countries in Africa, the supply and quality of food will rise to meet the growing population’s increasing demand. Genomics and other biotechnology tools offer the opportunity to improve subsistence crops and medicinal herbs in the continent. Significant advances have been made in plant genomics, which have enhanced our knowledge of the molecular processes underlying both plant quality and yield. The sequencing of complex genomes of African plant species, facilitated by the continuously evolving next-generation sequencing technologies and advanced bioinformatics approaches, has provided new opportunities for crop improvement. This review summarizes the achievements of genome sequencing projects of endemic African plants in the last two decades. We also present perspectives and challenges for future plant genomic studies that will accelerate important plant breeding programs for African communities. These challenges include a lack of basic facilities, a lack of sequencing and bioinformatics facilities, and a lack of skills to design genomics studies. However, it is imperative to state that African countries have become key players in the plant genome revolution and genome derived-biotechnology. Therefore, African governments should invest in public plant genomics research and applications, establish bioinformatics platforms and training programs, and stimulate university and industry partnerships to fully deploy plant genomics, particularly in the fields of agriculture and medicine.  相似文献   

13.
Staple crops face major challenges in the near future and a diversification away from over-reliance on staples will be important as part of the progress towards the goal of achieving security of food production. Underutilized or neglected crops species are often indigenous ancient crop species which are still used at some level within the local, national or even international communities, but have the potential to contribute further to the mix of food sources than they currently do. The most cost-effective and easily disseminated changes that can be made to a crop are changes to the genetics, as these are contained within the seed itself and, for many species, the seed is a pure breeding, self-replicating, resource. This article focuses on the potential of underutilized crops to contribute to food security and, in particular, whether genetics and breeding can overcome some of the constraints to the enhanced uptake of these species in the future. The focus here is on overview rather than detail and subsequent articles will examine the current evidence base.  相似文献   

14.
We are developing a genetic map of the dog based partly upon markers contained within known genes. In order to facilitate the development of these markers, we have used polymerase chain reaction (PCR) primers designed to conserved regions of genes that have been sequenced in at least two species. We have refined the method for designing primers to maximize the number that produce successful amplifications across as many mammalian species as possible. We report the development of primer sets for 11 loci in detail:CFTR, COL10A1, CSFIR, CYP1A1, DCN1, FES, GHR, GLB1, PKLR, PVALB, andRB1. We also report an additional 75 primer sets in the appendices. The PCR products were sequenced to show that the primers amplify the expected canine genes. These primer sets thus define a class of gene-specific sequence-tagged sites (STSs). There are a number of uses for these STSs, including the rapid development of various linkage tools and the rapid testing of genomic and cDNA libraries for the presence of their corresponding genes. Six of the eleven gene targets reported in detail have been proposed to serve as “anchored reference loci” for the development of mammalian genetic maps [O'Brien, S. J.,et al., Nat. Genet. 3:103, 1993]. The primer sets should cover a significant portion of the canine genome for the development of a linkage map. In order to determine how useful these primer sets would be for the other genome projects, we tested the 11 primer sets on the DNA from species representing five mammalian orders. Eighty-four percent of the gene-species combinations amplified successfully. We have named these primer sets “universal mammalian sequence-tagged sites” because they should be useful for many mammalian genome projects.  相似文献   

15.
Improving containment strategies in biopharming   总被引:2,自引:0,他引:2  
This review examines the challenges of segregating biopharmed crops expressing pharmaceutical or veterinary agents from mainstream crops, particularly those destined for food or feed use. The strategy of using major food crops as production vehicles for the expression of pharmaceutical or veterinary agents is critically analysed in the light of several recent episodes of contamination of the human food chain by non-approved crop varieties. Commercially viable strategies to limit or avoid biopharming intrusion into the human food chain require the more rigorous segregation of food and non-food varieties of the same crop species via a range of either physical or biological methods. Even more secure segregation is possible by the use of non-food crops, non-crop plants or in vitro plant cultures as production platforms for biopharming. Such platforms already under development range from outdoor-grown Nicotiana spp. to glasshouse-grown Arabidopsis , lotus and moss. Amongst the more effective methods for biocontainment are the plastid expression of transgenes, inducible and transient expression systems, and physical containment of plants or cell cultures. In the current atmosphere of heightened concerns over food safety and biosecurity, the future of biopharming may be largely determined by the extent to which the sector is able to maintain public confidence via a more considered approach to containment and security of its plant production systems.  相似文献   

16.

The current drainage-based peatland management systems in Indonesia result in high fire risks, soil subsidence and CO2 emissions. This study aims to assess different alternatives of peatland crops in order to help prevent further degradation of peatlands in Indonesia. We focus on tropical peatland crops that provide food and that are of particular interest to smallholders. We compare various peatland food crops that are commonly grown with no drainage (paludiculture) or drainage below 50 cm in our study area, Central Kalimantan, Indonesia in terms of sustainability, profitability, scalability of the market and acceptability to farmers. Our results show that sago (Metroxylon sagu), banana (Musa paradisiaca) and pineapple (Ananas comosus) followed by water spinach/kangkong (Ipomoea aquatica), kelakai/edible fern (Stenochlaena palustris), illipe nut/tengkawang (Shorea spp.), dragon fruit (Hylocereus undatus), mangosteen (Garcinia mangostana) and sweet melon/melon (Cucumis melo) are the best options based on the aggregated scores for these criteria (but precaution should be taken when planting crops that require low drainage). Sago palm and illipe nut have the highest scores for both sustainability and scalability of market, whereas banana, pineapple and sweet melon have the highest scores in term of the scalability of market and acceptability to farmers. We also address key opportunities and bottlenecks for the development of paludiculture food crops and present recommendations for the implementation of paludiculture in Indonesian peatlands.

  相似文献   

17.
Horticultural crops mainly include fruits, vegetables, ornamental trees and flowers, and tea trees (Melaleuca alternifolia). They produce a variety of nutrients for the daily human diet in addition to the nutrition provided by staple crops, and some of them additionally possess ornamental and medicinal features. As such, horticultural crops make unique and important contributions to both food security and a colorful lifestyle. Under the current climate change scenario, the growing population and limited arable land means that agriculture, and especially horticulture, has been facing unprecedented challenges to meet the diverse demands of human daily life. Breeding horticultural crops with high quality and adaptability and establishing an effective system that combines cultivation, post-harvest handling, and sales becomes increasingly imperative for horticultural production. This review discusses characteristic and recent research highlights in horticultural crops, focusing on the breeding of quality traits and the mechanisms that underpin them. It additionally addresses challenges and potential solutions in horticultural production and post-harvest practices. Finally, we provide a prospective as to how emerging technologies can be implemented alongside interdisciplinary basic research to enhance our understanding and exploitation of horticultural crops.  相似文献   

18.
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR‐enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)—the synthesis of the high molecular weight rubber polymer itself—is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.  相似文献   

19.
20.

Background  

Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号