首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-steroidal anti-inflammatory drugs (NSAIDs) and inhibitors of the cyclooxygenase (COX) pathways are currently recommended for the prevention and treatment of several inflammatory diseases, including neurodegenerative disorders. However non-selective blockade of COX was found to have pro-inflammatory properties, because they have the ability to alter the plasma glucocorticoid levels that play a critical role in the control of the innate immune response. The present study investigated the role of non-selective (ketorolac or indomethacin) or specific inhibitors of COX-1 (SC-560) and COX-2 (NS-398) in these effects. Mice challenged systemically with the endotoxin lipopolysaccharide (LPS) exhibited a robust hybridization signal for numerous inflammatory genes in vascular-associated cells of the brain and microglia across the cerebral tissue. Ketorolac, indomethacin and NS-398 significantly increased the ability of LPS to trigger such an innate immune response at time 3 h post challenge, whereas SC-560 failed to change gene expression in the brain of animals treated with the endotoxin. These data together with the crucial role of COX-2-derived prostaglandin E2 (PGE2) in the increase of glucocorticoids during systemic immune stimuli provide evidence that inhibition of this pathway results in an exacerbated early innate immune reaction. This may have a major impact on the use of these drugs in diseases where inflammation is believed to be a contributing and detrimental factor.  相似文献   

2.
环加氧酶及其药理学研究进展   总被引:1,自引:0,他引:1  
张炜煜  朱兴族 《生命科学》2005,17(3):231-235
环加氧酶(cyclooxygenase,COX)是参与花生四烯酸代谢途径的限速酶,可催化花生四烯酸转化为前列腺素(prostaglandins,PGs)。已知哺乳动物的COX至少有两种异构酶,分别是固有表达的COX-1和诱导表达的COX-2。目前认为COX-1产生具有生理作用的前列腺素参与维持机体正常的生理功能;而COX-2产生的前列腺素主要参与炎症。但随着研究的深入,发现两者生成的前列腺素的生物功能不仅更复杂,而且还存在着相互联系。本文回顾了近年来环加氧酶在多种疾病中的研究进展,并探讨了环加氧酶作为一个潜在的治疗靶点的可能性。  相似文献   

3.
There is mounting evidence suggesting that the commonly used analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), may inhibit new bone formation with physical training and increase risk of stress fractures in physically active populations. Stress fractures are thought to occur when bones are subjected to repetitive mechanical loading, which can lead to a cycle of tissue microdamage, repair, and continued mechanical loading until fracture. Adaptive bone formation, particularly on the periosteal surface of long bones, is a concurrent adaptive response of bone to heightened mechanical loading that can improve the fatigue resistance of the skeletal structure, and therefore may play a critical role in offsetting the risk of stress fracture. Reports from animal studies suggest that NSAID administration may suppress this important adaptive response to mechanical loading. These observations have implications for populations such as endurance athletes and military recruits who are at risk of stress fracture and whose use of NSAIDs is widespread. However, results from human trials evaluating exercise and bone adaptation with NSAID consumption have been less conclusive. In this review, we identify knowledge gaps that must be addressed to further support NSAID-related guidelines intended for at-risk populations and individuals.  相似文献   

4.
Ascorbic acid (vitamin C) has been suggested to protect cerebral tissue in a variety of pathophysiological situations such as head trauma, ischemia or Alzheimer's disease. Most of these protective actions have been attributed to the antioxidative capacity of ascorbic acid. Besides the presence of elevated levels of oxygen radicals, prostaglandins produced by neurones and microglial cells seem to play an important role in prolonged tissue damage. We investigated whether ascorbic acid alone inhibits prostaglandin E2 (PGE2) synthesis and may augment the inhibitory effect of acetylsalicylic acid on prostaglandin synthesis. Ascorbic acid dose-dependently inhibited PGE2 synthesis in lipopolysaccharide-treated primary rat microglial cells (IC50 = 3.70 micro m). In combination with acetylsalicylic acid (IC50 = 1.85 micro m), ascorbic acid augmented the inhibitory effect of acetylsalicylic acid on PGE2 synthesis (IC50 = 0.25 micro m in combination with 100 micro m ascorbic acid). Ascorbic acid alone or in combination with acetylsalicylic acid did not inhibit cyclooxygenase-2 (COX-2) protein synthesis but inhibited COX-2 enzyme activity. Our results show that ascorbic acid and acetylsalicylic acid act synergistically in inhibiting PGE2 synthesis, which may help to explain a possible protective effect of ascorbic acid in various brain diseases.  相似文献   

5.
Hypoxia and angiogenesis can significantly influence the efficacy of cancer therapy and the behavior of surviving tumor cells. There is a growing demand for technologies to measure tumor hypoxia and angiogenesis temporally in vivo to enable advances in drug development and optimization. This paper reports the use of frequency‐domain photon migration with a side‐firing probe to quantify tumor oxygenation and hemoglobin concentrations in nude rats bearing human head/neck tumors administered with carbogen gas, cycling hypoxic gas or just room air. Significant increase (with carbogen gas breathing) or decrease (with hypoxic gas breathing) in tumor oxygenation was observed. The trend in tumor oxygenation during forced cycling hypoxia (CH) followed that of the blood oxygenation measured with a pulse oximeter. Natural CH was also observed in rats under room air. The studies demonstrated the potential of the technology for longitudinal monitoring of tumor CH during tumor growth or in response to therapy. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The mechanism underlying vasoproliferative retinopathies like retinopathy of prematurity (ROP) is hypoxia‐triggered neovascularisation. Nerve growth factor (NGF), a neurotrophin supporting survival and differentiation of neuronal cells may also regulate endothelial cell functions. Here we studied the role of NGF in pathological retinal angiogenesis in the course of the ROP mouse model. Topical application of NGF enhanced while intraocular injections of anti‐NGF neutralizing antibody reduced pathological retinal vascularization in mice subjected to the ROP model. The pro‐angiogenic effect of NGF in the retina was mediated by inhibition of retinal endothelial cell apoptosis. In vitro, NGF decreased the intrinsic (mitochondria‐dependent) apoptosis in hypoxia‐treated human retinal microvascular endothelial cells and preserved the mitochondrial membrane potential. The anti‐apoptotic effect of NGF was associated with increased BCL2 and reduced BAX, as well as with enhanced ERK and AKT phosphorylation, and was abolished by inhibition of the AKT pathway. Our findings reveal an anti‐apoptotic role of NGF in the hypoxic retinal endothelium, which is involved in promoting pathological retinal vascularization, thereby pointing to NGF as a potential target for proliferative retinopathies.  相似文献   

7.
A20 is a zinc finger protein associated with hypoxia. As chronic hypoxia is responsible for intimal hyperplasia and disordered angiogenesis of pulmonary artery, which are histological hallmarks of pulmonary artery hypertension, we intended to explore the role of A20 in angiogenesis of pulmonary artery endothelial cells (ECs). Here, we found a transient elevation of A20 expression in the lung tissues from hypoxic rats compared with normoxic controls. This rapid enhancement was mainly detected in the endothelium, and similar results were reproduced in vitro. During early hypoxia, genetic inhibition of A20 increased proliferation in pulmonary artery ECs, linking to advanced cell cycle progression as well as microtubule polymerization, and aggravated angiogenic effects including tube formation, cell migration and adhesion molecules expression. In addition, a negative feedback loop between nuclear factor‐kappa B and A20 was confirmed. Our findings provide evidence for an adaptive role of A20 against pulmonary artery ECs angiogenesis via nuclear factor‐kappa B activation.  相似文献   

8.
The effect of in utero hypoxia on fetal heart and brain trace metals.   总被引:2,自引:0,他引:2  
This study determined the effect of in utero hypoxia on fetal heart and brain pro- and antioxidant trace metals. Dunkin-Hartley guinea pigs (50–60 days gestation) were exposed to 1 h hypoxia (7% O2/93% N2) followed by 4 h reoxygenation in room air. Fetal hearts and brains were harvested and analyzed for copper, iron, magnesium and zinc. Fetal brain iron was significantly increased 28% after hypoxia and 35% by 1 h posthypoxia. Fetal brain magnesium demonstrated progressive decreases of 18% by 4 h posthypoxia. No significant effects of hypoxia were observed on heart trace metals. These results indicate that prooxidant metals may be increased and antioxidant metals may be decreased in posthypoxic fetal brain during a time when these tissues may be vulnerable to oxidative injury.  相似文献   

9.
Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1''-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds.  相似文献   

10.
This study determined the effect of in utero hypoxia on fetal heart and brain pro- and antioxidant trace metals. Dunkin-Hartley guinea pigs (50–60 days gestation) were exposed to 1 h hypoxia (7% O2/93% N2) followed by 4 h reoxygenation in room air. Fetal hearts and brains were harvested and analyzed for copper, iron, magnesium and zinc. Fetal brain iron was significantly increased 28% after hypoxia and 35% by 1 h posthypoxia. Fetal brain magnesium demonstrated progressive decreases of 18% by 4 h posthypoxia. No significant effects of hypoxia were observed on heart trace metals. These results indicate that prooxidant metals may be increased and antioxidant metals may be decreased in posthypoxic fetal brain during a time when these tissues may be vulnerable to oxidative injury.  相似文献   

11.
In this study, we investigated the role of a long non‐coding RNA GAPLINC in angiogenesis using human umbilical vein endothelial cells (HUVEC). We found that hypoxia and hypoxia‐inducible factor 1α (HIF‐1α) increased the expression of GAPLINC in HUVEC cells. Moreover, GAPLINC overexpression down‐regulated miR‐211 and up‐regulated Bcl2 protein expression. Further rescue experiments confirmed that hypoxia directly increased GAPLINC expression. GAPLINC overexpression also increased cell migration and vessel formation which promoted angiogenesis, and these changes were attributed to the increased expression of vascular endothelial growth factor receptors (VEGFR) and delta‐like canonical notch ligand 4 (DLL4) receptors. Finally, we demonstrated that GAPLINC promotes vessel formation and migration by regulating MAPK and NF‐kB signalling pathways. Taken together, these findings comprehensively demonstrate that overexpression of GAPLINC increases HUVEC cells angiogenesis under hypoxia condition suggesting that GAPLINC can be a potential target for critical limb ischaemia (CLI) treatment.  相似文献   

12.
Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo-inositol-trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2) and stabilizes vessel normalization through activation of endothelial Phosphatase-and-Tensin-homologue (PTEN). Here, we show that the tumour reduction due to the ITPP-induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage-type proportions, increased proportions of NK and CD8+T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+NK cells to tumour cells is due to their adhesion to PD-L1+/PD-L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD-L1/PD-L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA-4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.  相似文献   

13.
A recent study has shown that increased activity of matrix metalloproteinases‐2 and metalloproteinases‐9 (MMP‐2 and MMP‐9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP‐2 and MMP‐9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP‐1 and TIMP‐2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP‐2 and MMP‐9 and the protein abundance of TIMP‐1 and TIMP‐2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP‐2 at day 0, and increased MMP‐9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP‐2, MMP‐9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

14.
Alzheimer's disease (AD) is characterized by cerebral deposits of beta-amyloid (A beta) peptides and neurofibrillary tangles (NFT) which are surrounded by inflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD and delays the onset of the disease. It has been postulated that some NSAIDs target pathological hallmarks of AD by interacting with several pathways, including the inhibition of cyclooxygenases (COX) and activation of the peroxisome proliferator-activated receptor gamma. A variety of experimental studies indicate that a subset of NSAIDs such as ibuprofen, flurbiprofen, indomethacin and sulindac also possess A beta-lowering properties in both AD transgenic mice and cell cultures of peripheral, glial and neuronal origin. While COX inhibition occurs at low concentrations in vitro (nM-low microm range), the A beta-lowering activity is observed at high concentrations (< or = 50 microm). Nonetheless, studies with flurbiprofen or ibuprofen in AD transgenic mice show that the effects on A beta levels or deposition are attained at plasma levels similar to those achieved in humans at therapeutic dosage. Still, it remains to be assessed whether adequate concentrations are reached in the brain. This is a crucial aspect that will allow defining the dose-window and the length of treatment in future clinical trials. Here, we will discuss how the combination of anti-amyloidogenic and anti-inflammatory activities of certain NSAIDs may produce a profile potentially relevant to their clinical use as disease-modifying agents for the treatment of AD.  相似文献   

15.
Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis   总被引:11,自引:0,他引:11  
Cyclooxygenase (COX)-2 and the prostaglandins resulting from its enzymatic activity have been shown to play a role in modulating cell growth and development of human neoplasia. Evidence includes a direct relationship between COX-2 expression and cancer incidence in humans and animal models, increased tumorigenesis after genetic manipulation of COX-2, and significant anti-tumor properties of non-steroidal anti-inflammatory drugs in animal models and in some human cancers. Recent data showed that COX-2 and the derived prostaglandins are involved in control of cellular growth, apoptosis, and signal through a group of nuclear receptors named peroxisome proliferator-activated receptors (PPARs). In this article we will review some of the findings suggesting that COX-2 is involved in multiple cellular mechanisms that lead to tumorigenesis.  相似文献   

16.
We showed previously that blood vessel maturation in the CNS is associated with a developmental switch in brain capillary endothelial cells (BCEC), from fibronectin signalling during angiogenesis to laminin signalling in the adult. To investigate the functional significance of this switch, we have examined the response of BCEC to different extracellular matrix (ECM) proteins. This showed that BCEC proliferation was significantly promoted by fibronectin (28.2 +/- 4.0%) and by vitronectin (14.8 +/- 2.1%) compared with uncoated glass (7.2 +/- 0.7%), while BCEC survival was significantly promoted by fibronectin (1130 +/- 131 cells), vitronectin (830 +/- 63 cells), collagen IV (703 +/- 77 cells) and laminin (680 +/- 34 cells) compared with the uncoated glass (367 +/- 48 cells). Biochemical studies showed that BCEC express a limited repertoire of integrins, including the beta1 integrins, alpha3beta1, alpha5beta1 and alpha6beta1, and the alphavbeta3 integrin. Function-blocking studies showed that the response to fibronectin was mediated equally by the alpha5beta1 and alphavbeta3 integrins. Analysis of signalling pathways revealed that fibronectin stimulated activation of the p44/p42 MAP kinase signalling pathway and pharmacological inhibitors of this pathway blocked BCEC proliferation on fibronectin. Taken together, these findings show that fibronectin exerts a strong angiogenic influence on endothelial cells (EC) in the CNS, and that this is mediated through the alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. In addition to a fundamental role in development, these findings may also have implications in pathological conditions of the CNS where fibronectin is re-expressed.  相似文献   

17.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   

18.
Yu  Neng  Culver  David A. 《Hydrobiologia》1999,392(2):205-215
Experiments and field surveys were conducted in Hargus Lake (Ohio, U.S.) to investigate the effect of lake stratification on the survival, growth and distribution of zebra mussels. During the lake stratification period, relatively stable temperature and dissolved oxygen (DO) gradients persisted across the water column, allowing us to examine the chronic effect of hypoxia on zebra mussels. Zebra mussels were incubated in cages and suspended at different depths in the water column at both pelagic (max. depth = 12 m) and littoral (max. depth = 3.5 m) sites from April 18 to September 28, 1994. No mussel survived to the end of the experiment in cages ≥ 5.5 m, whereas the highest survival rate (76%) occurred at 5 m depth where temperature and DO remained fairly stable for at least 3 months. The threshold oxygen level for survival was between 1.0–1.7 mg l-1 when water temperature was at about 17–18 °C. While zebra mussels′ survival rate was not affected under the sublethal hypoxic conditions, their growth was greatly retarded by poor water quality. The field survey showed that the zebra mussels and macrophytes had about the same distribution and their biomasses were positively related. The percentage of mussels in aggregates increased towards their maximum distribution depth. The maximum distribution depth of the naturally occurring zebra mussels was only 2.8 m, whereas the adult mussels could survive the entire stratification period when being artificially placed on the 3.5 m bottom, and young mussels could colonize the 3.5 m bottom if solid substrates were provided. We conclude that lack of substrate, rather than hypoxia, was the limiting factor of zebra mussel distribution above 5 m depth in Hargus Lake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Zhang L  Zhang WP  Chen KD  Qian XD  Fang SH  Wei EQ 《Life sciences》2007,80(6):530-537
Traumatic brain injury induces neuron damage in early phase, and astrogliosis and the formation of the glial scar in late phase. Caffeic acid (3, 4-dihydroxycinnamic acid), one of the natural phenolic compounds, exerts neuroprotective effects against ischemic brain injuries with anti-oxidant and anti-inflammatory properties, and by scavenging reactive species. However, whether caffeic acid has protective effects against traumatic brain injury is unknown. Therefore, we determined the effect of caffeic acid on the lesion in the early (1 day) and late phases (7 to 28 days) of cryoinjury in mice. We found that caffeic acid (10 and 50 mg/kg, i.p., for 7 days after cryoinjury) reduced the lesion area and attenuated the neuron loss around the lesion core 1 to 28 days, but attenuated the neuron loss in the lesion core only 1 day after cryoinjury. Moreover, caffeic acid attenuated astrocyte proliferation, glial scar wall formation and glial fibrillary acidic protein (GFAP) protein expression in the late phase of cryoinjury (7 to 28 days). Caffeic acid also inhibited the reduction of superoxide dismutase activity and the increase in malondialdehyde content in the brain 1 day after cryoinjury. These results indicate that caffeic acid exerts a protective effect in traumatic brain injury, especially on glial scar formation in the late phase, which at least is associated with its anti-oxidant ability.  相似文献   

20.
It has been shown that induction of HSP70 by administration of geranylgeranylacetone (GGA) leads to protection against ischemia/reperfusion injury. The present study was performed to determine the effect of GGA on the survival of mice and on brain damage under acute hypobaric hypoxia. The data showed that the mice injected with GGA survived significantly longer than control animals (survival time of 9.55 ± 3.12 min, n = 16 vs. controls at 4.28 ± 4.29 min, n = 15, P < 0.005). Accordingly, the cellular necrosis or degeneration of the hippocampus and the cortex induced by sublethal hypoxia for 6 h could be attenuated by preinjection with GGA, especially in the CA2 and CA3 regions of the hippocampus. In addition, the activity of nitric oxide synthase (NOS) of the hippocampus and the cortex was increased after exposure to sublethal hypoxia for 6 h but could be inhibited by the preinjection of GGA. Furthermore, the expression of HSP70 was significantly increased at 1 h after GGA injection. These results suggest that administration of GGA improved survival rate and prevented acute hypoxic damage to the brain and that the underlying mechanism involved induction of HSP70 and inhibition of NOS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号