首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work has suggested that emergent ecological network structure exhibits very little spatial or temporal variance despite changes in community composition. However, the changes in network interactions associated with turnover in community composition have seldom been assessed. Here we examine whether changes in ecological networks are best detected by standard emergent network metrics or by assessing internal network changes (i.e. interaction and composition turnover). To eliminate possible spatial or phylogenetic effects, that in large‐scale studies may obscure mechanisms structuring networks and interactions, we sampled multiple antagonistic (plant–herbivore) networks for a single diverse plant family (the Restionaceae) in the hyperdiverse Cape Floristic Region. These are the first plant–herbivore networks constructed for this global biodiversity hotspot. We found invariant emergent network structure despite considerable changes in insect and plant composition across communities over time and space. In contrast, there was high interaction turnover between networks. Seasonally, this was driven by turnover in insect species and insect host switching. Spatially, this was driven by simultaneous turnover in plant and insect species, suggesting that many insects are host specific or that both groups exhibit parallel responses to environmental gradients. Spatial interaction turnover was also driven by turnover in plants, showing that many insects can utilise multiple (possibly closely related) hosts and this may create divergent selection gradients that promote insect speciation. Thus we show highly variable interaction fidelity, despite invariant emergent network structure. We suggest that evaluating internal network changes may be more effective at elucidating the processes structuring networks, and many fine‐scale changes may be obscured when only calculating emergent network metrics.  相似文献   

2.
Niche and neutral processes drive community assembly and metacommunity dynamics, but their relative importance might vary with the spatial scale. The contribution of niche processes is generally expected to increase with increasing spatial extent at a higher rate than that of neutral processes. However, the extent to what community composition is limited by dispersal (usually considered a neutral process) over increasing spatial scales might depend on the dispersal capacity of composing species. To investigate the mechanisms underlying the distribution and diversity of species known to have great powers of dispersal (hundreds of kilometres), we analysed the relative importance of niche processes and dispersal limitation in determining beta‐diversity patterns of aquatic plants and cladocerans over regional (up to 300 km) and continental (up to 3300 km) scales. Both taxonomic groups were surveyed in five different European regions and presented extremely high levels of beta‐diversity, both within and among regions. High beta‐diversity was primarily explained by species replacement (turnover) rather than differences in species richness (i.e. nestedness). Abiotic and biotic variables were the main drivers of community composition. Within some regions, small‐scale connectivity and the spatial configuration of sampled communities explained a significant, though smaller, fraction of compositional variation, particularly for aquatic plants. At continental scale (among regions), a significant fraction of compositional variation was explained by a combination of spatial effects (exclusive contribution of regions) and regionally‐structured environmental variables. Our results suggest that, although dispersal limitation might affect species composition in some regions, aquatic plant and cladoceran communities are not generally limited by dispersal at the regional scale (up to 300 km). Species sorting mediated by environmental variation might explain the high species turnover of aquatic plants and cladocerans at regional scale, while biogeographic processes enhanced by dispersal limitation among regions might determine the composition of regional biotas.  相似文献   

3.
Top–down effects of herbivores and bottom–up effects of nutrients shape productivity and diversity across ecosystems, yet their single and combined effects on spatial and temporal beta diversity is unknown. We established a field experiment in which the abundance of insect herbivores (top–down) and soil nitrogen (bottom–up) were manipulated over six years in an existing old‐field community. We tracked plant α and β diversity – within plot richness and among plot biodiversity‐ and aboveground net primary productivity (ANPP) over the course of the experiment. We found that bottom–up factors affected ANPP while top–down factors influenced plant community structure. Across years, while N reduction lowered ANPP by 10%, N reduction did not alter ANPP relative to control plots. Further, N reduction lowered ANPP by 20% relative to N addition plots. On the other hand, the reduction of insect herbivores did not alter plant richness (α diversity) yet consistently promoted Shannon's evenness, relative to plots where insect herbivores were present. Further, insect herbivores promoted spatial‐temporal β diversity. Overall, we found that the relative importance of top–down and bottom–up controls of plant ANPP, plant α diversity, and composition (β diversity) can vary significantly in magnitude and direction. In addition, their effects varied through time, with bottom–up effects influencing ANPP quickly while the effects of top–down factors emerging only late in the experiment to influence plant community composition via shifts in plant dominance.  相似文献   

4.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

5.
Climate change will have profound impacts on the distribution, abundance and ecology of all species. We used a multi-species transplant experiment to investigate the potential effects of a warmer climate on insect community composition and structure. Eight native Australian plant species were transplanted into sites approximately 2.5°C (mean annual temperature) warmer than their native range. Subsequent insect colonisation was monitored for 12 months. We compared the insect communities on transplanted host plants at the warmer sites with control plants transplanted within the species'' native range. Comparisons of the insect communities were also made among transplanted plants at warmer sites and congeneric plant species native to the warmer transplant area. We found that the morphospecies composition of the colonising Coleoptera and Hemiptera communities differed markedly between transplants at the control compared to the warmer sites. Community structure, as described by the distribution of feeding guilds, was also found to be different between the controls and transplants when the entire Coleoptera and Hemiptera community, including non-herbivore feeding guilds, was considered. However, the structure of the herbivorous insect community showed a higher level of consistency between plants at control and warm sites. There were marked differences in community composition and feeding guild structure, for both herbivores and non-herbivores, between transplants and congenerics at the warm sites. These results suggest that as the climate warms, considerable turnover in the composition of insect communities may occur, but insect herbivore communities may retain elements of their present-day structure.  相似文献   

6.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

7.
Synthesis The interplay between bottom‐up and top‐down effects is certainly a general manifestation of any changes in both species abundances and diversity. Summary variables, such as species numbers, diversity indices or lumped species abundances provide too limited information about highly complex ecosystems. In contrast, species by species analyses of ecological communities comprising hundreds of species are inevitably only snapshot‐like and lack generality in explaining processes within communities. Our synthesis, based on species matrices of functional groups of all trophic levels, simplifies community complexity to a manageable degree while retaining full species‐specific information. Taking into account plant species richness, plant biomass, soil properties and relevant spatial scales, we decompose variance of abundance in consumer functional groups to determine the direction and the magnitude of community controlling processes. After decades of intensive research, the relative importance of top–down and bottom–up control for structuring ecological communities is still a particularly disputed issue among ecologists. In our study, we determine the relative role of bottom–up and top–down forces in structuring the composition of 13 arthropod functional groups (FG) comprising different trophic consumer levels. Based on species‐specific plant biomass and arthropod abundance data from 50 plots of a grassland biodiversity experiment, we quantified the proportions of bottom–up and top–down forces on consumer FG composition while taking into account direct and indirect effects of plant diversity, functional diversity, community biomass, soil properties and spatial arrangement of these plots. Variance partitioning using partial redundancy analysis explained 21–44% of total variation in arthropod functional group composition. Plant‐mediated bottom–up forces accounted for the major part of the explainable variation within the composition of all FGs. Predator‐mediated top–down forces, however, were much weaker, yet influenced the majority of consumer FGs. Plant functional group composition, notably legume composition, had the most important impact on virtually all consumer FGs. Compared to plant species richness and plant functional group richness, plant community biomass explained a much higher proportion of variation in consumer community composition.  相似文献   

8.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   

9.
Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.  相似文献   

10.
Leaf miners are specialist herbivorous insects that are potentially vulnerable to environmental change because of their dependency on particular host plants. Little, however, is known about how climate affects the distribution of leaf miner communities and their interactions with host plants. Elevational gradients are useful tools for understanding how ecological communities respond to local clines in climate. Given that plant communities are known to undergo elevational turnover in response to changes in climatic conditions, we expect that leaf miner species will also change with elevation. We repeatedly hand collected leaf miners along three elevational gradients in subtropical rainforest in eastern Australia. Individual leaf miners were counted and identified to species, and their host plants were recorded. We tested if leaf miner species richness and the number of unique interactions among leaf miner and host plant species were affected by elevation. We also tested if the composition of leaf miner species and the composition of interactions between leaf miners and host plants showed a relationship with elevation. The rarefied number of unique leaf miner–host plant interactions significantly decreased with elevation, with a slight peak at approx. 700 m a.s.l., while neither rarefied or observed species richness (species density) of leaf miners nor observed numbers of unique interactions (interaction density) were significantly affected by elevation. The composition of leaf miner species and the composition of leaf miner–host plant interactions (occurrence of pairwise interactions) were significantly related to elevation. Elevational turnover in leaf miner species composition indicated that different species varied in their response to changes in biotic and/or abiotic conditions imposed by increasing elevation. Through our analyses, we identified four leaf miner species that may be locally vulnerable to climate change, as a result of their restricted elevational distribution and level of host specificity.  相似文献   

11.
Enviro–climatic changes are thought to be causing alterations in ecosystem processes through shifts in plant and microbial communities; however, how links between plant and microbial communities change with enviro–climatic change is likely to be less straightforward but may be fundamental for many ecological processes. To address this, we assessed the composition of the plant community and the prokaryotic community – using amplicon-based sequencing – of three European peatlands that were distinct in enviro–climatic conditions. Bipartite networks were used to construct site-specific plant–prokaryote co-occurrence networks. Our data show that between sites, plant and prokaryotic communities differ and that turnover in interactions between the communities was complex. Essentially, turnover in plant–microbial interactions is much faster than turnover in the respective communities. Our findings suggest that network rewiring does largely result from novel or different interactions between species common to all realised networks. Hence, turnover in network composition is largely driven by the establishment of new interactions between a core community of plants and microorganisms that are shared among all sites. Taken together our results indicate that plant–microbe associations are context dependent, and that changes in enviro–climatic conditions will likely lead to network rewiring. Integrating turnover in plant–microbe interactions into studies that assess the impact of enviro–climatic change on peatland ecosystems is essential to understand ecosystem dynamics and must be combined with studies on the impact of these changes on ecosystem processes.  相似文献   

12.
In metacommunities, diversity is the product of species interactions at the local scale and dispersal between habitat patches at the regional scale. Although warming can alter both species interactions and dispersal, the combined effects of warming on these two processes remains uncertain. To determine the independent and interactive effects of warming‐induced changes to local species interactions and dispersal, we constructed experimental metacommunities consisting of enclosed milkweed patches seeded with five herbivorous milkweed specialist insect species. We treated metacommunities with two levels of warming (unwarmed and warmed) and three levels of connectivity (isolated, low connectivity, high connectivity). Based on metabolic theory, we predicted that if plant resources were limited, warming would accelerate resource drawdown, causing local insect declines and increasing both insect dispersal and the importance of connectivity to neighboring patches for insect persistence. Conversely, given abundant resources, warming could have positive local effects on insects, and the risk of traversing a corridor to reach a neighboring patch could outweigh the benefits of additional resources. We found support for the latter scenario. Neither resource drawdown nor the weak insect‐insect associations in our system were affected by warming, and most insect species did better locally in warmed conditions and had dispersal responses that were unchanged or indirectly affected by warming. Dispersal across the matrix posed a species‐specific risk that led to declines in two species in connected metacommunities. Combined, this scaled up to cause an interactive effect of warming and connectivity on diversity, with unwarmed metacommunities with low connectivity incurring the most rapid declines in diversity. Overall, this study demonstrates the importance of integrating the complex outcomes of species interactions and spatial structure in understanding community response to climate change.  相似文献   

13.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

14.
Most organisms in ephemeral habitat patches have resting stages which form a local species pool in response to temporal variations in the patch's availability and suitability. Temporal dispersal from the local species pool may, therefore, be an important process shaping the community assembly, particularly soon after patch creation, and possibly interacting with environmental filtering. As the temporal variation of the environmental conditions has a major effect on the composition of the local species pool, we investigated how well contemporary conditions (both patch availability and patch suitability) and temporal dispersal (approximated by environmental temporal variation and temporal distance) explain the changes in community composition in a given locality through successive ephemeral habitat cycles. We used arable weeds in annual crops as models. We calculated temporal weed community dissimilarity indices between weed communities surveyed in cropping seasons at intervals of two to eight years within a given field. The weeds were surveyed twice each cropping season to account for any changes in the relative contributions of temporal dispersal and contemporary conditions during the season. Patch availability explained most of the temporal weed dissimilarity, suggesting that patch dynamics have the greatest effect on weed community assembly. Temporal distance and temporal variation of the environmental conditions had more effect at the start of the cropping season than later, while patch suitability had more effect in the middle of the season. These results suggest that temporal dispersal drives the weed community assembly when ephemeral habitat patches are created. These assemblies are further shaped by environmental filtering. This is consistent with a temporal source sink dynamic mechanism where the seed bank acts as the main weed source. However, a large part of temporal weed dissimilarity remains unexplained, suggesting that other ecological processes such as spatial dispersal and founder effect may also shape the weed community.  相似文献   

15.
Eastern European grasslands are still inhabited by a rich arthropod fauna, but the drivers and mechanisms influencing their communities have to be understood to ensure their future survival. Heteroptera communities were studied in 20 plot-pairs in Pannonic salt steppe–salt marsh mosaics in Hungary. The effects of vegetation characteristics, landscape diversity and the proportion of surrounding grasslands on the composition, species richness and abundance of different feeding groups of true bugs (carnivores, specialist and generalist herbivores) were examined using ordinations and mixed-effect models. We found distinct herbivorous assemblages corresponding to microtopography-driven differences in water regime and vegetation between steppe and marsh plots, but this pattern was less pronounced in carnivorous assemblages. A higher species richness of true bugs was found in the more diverse steppe vegetation than in the salt marsh vegetation, while the abundance pattern of true bugs was opposite. Landscape diversity had a positive effect on the species richness and abundance of generalist herbivores and carnivores. Our results suggested that generalist herbivores and carnivores appear to drive diversity patterns in the local landscape due to their high dispersal abilities and the broader range of resources they can utilize. Specialist herbivores strongly influence the local insect biomass in relation to the distribution and density of their host plants. The present study highlights the importance of both habitat and landscape diversity for local insect diversity in Pannonic salt grasslands and suggests that the main threats for arthropod diversity are those processes and activities that homogenize these areas.  相似文献   

16.
1. Interactions between two trophic levels can be very intimate, often making species dependent on each other, something that increases with specialisation. Some specialised multivoltine herbivores may depend on multiple plant species for their survival over the course of a growing season, especially if their food plants are short‐lived and grow at different times. Later generations may exploit different plant species from those exploited by previous generations. 2. Multivoltine parasitoids as well as their natural enemies must also find their hosts on different food plants in different habitats across the season. Secondary hyperparasitoid communities have been studied on cocoons of the primary parasitoid, Cotesia glomerata (Hymenoptera: Braconidae), on black mustard (Brassica nigra) – a major food plant of its host, the large cabbage white (Pieris brassicae) – which grows in mid‐summer. 3. Here, hyperparasitoid communities on C. glomerata pupal clusters were studied on an early‐season host, garlic mustard, Alliaria petiolata, over ‘time’ (one season, April–July) in six closely located ‘populations’ (c. 2 km apart), and within two different ‘areas’ at greater separation (c. 100 km apart). At the plant level, spatial effects of pupal ‘location’ (canopy or bottom) on the plant were tested. 4. Although large‐scale separation (area) did not influence hyperparasitism, sampling time and small‐scale separation (population) affected hyperparasitism levels and composition of hyperparasitoid communities. Location on the plant strongly increased proportions of winged species in the canopy and proportions of wingless species in bottom‐located pupae. 5. These results show that hyperparasitism varies considerably at the local level, but that differences in hyperparasitoid communities do not increase with spatial distance.  相似文献   

17.
Species assemblages are the results of various processes, including dispersion and habitat filtering. Disentangling the effects of these different processes is challenging for statistical analysis, especially when biotic interactions should be considered. In this study, we used plants (producers) and leafhoppers (phytophagous) as model organisms, and we investigated the relative importance of abiotic versus biotic factors that shape community assemblages, and we infer on their biotic interactions by applying three‐step statistical analysis. We applied a novel statistical analysis, that is, multiblock Redundancy Analysis (mbRA, step 1) and showed that 51.8% and 54.1% of the overall variation in plant and leafhopper assemblages are, respectively, explained by the two multiblock models. The most important blocks of variables to explain the variations in plant and leafhopper assemblages were local topography and biotic factors. Variation partitioning analysis (step 2) showed that pure abiotic filtering and pure biotic processes were relatively less important than their combinations, suggesting that biotic relationships are strongly structured by abiotic conditions. Pairwise co‐occurrence analysis (step 3) on generalist leafhoppers and the most common plants identified 40 segregated species pairs (mainly between plant species) and 16 aggregated pairs (mainly between leafhopper species). Pairwise analysis on specialist leafhoppers and potential host plants clearly revealed aggregated patterns. Plant segregation suggests heterogeneous resource availability and competitive interactions, while leafhopper aggregation suggests host feeding differentiation at the local level, different feeding microhabitats on host plants, and similar environmental requirements of the species. Using the novel mbRA, we disentangle for the first time the relative importance of more than five distinct groups of variables shaping local species communities. We highlighted the important role of abiotic processes mediated by bottom‐up effects of plants on leafhopper communities. Our results revealed that in‐field structure diversification and trophic interactions are the main factors causing the co‐occurrence patterns observed.  相似文献   

18.
Concepts regarding effects of recurrent natural disturbances and subsequent responses of communities are central to ecology and conservation biology. Tropical cyclones constitute major disturbances producing direct effects (damage, mortality) in many coastal communities worldwide. Subsequent reassembly involves changes in composition and abundance for which the underlying mechanisms (deterministic and stochastic processes) are still not clear, especially for mobile organisms. We examined tropical cyclone-induced changes in composition and reassembly of entire insect communities in 16 Louisiana coastal salt marshes before and after Hurricane Isaac in 2012 and 2013. We used the Shannon index and multivariate permutational ANOVA to study insect resistance and resilience, β diversity partitioning to evaluate the importance of species replacement, and null models to disentangle the relative roles of different assembly processes over time after the tropical cyclone. The α diversity and species composition, overall and for different trophic levels, decreased immediately after the tropical cyclone; nonetheless, both then increased rapidly and returned to pre-cyclone states within one year. Changes in species abundance, rather than species replacement, was the primary driver, accounting for most temporal dissimilarity among insect communities. Stochastic processes, which drove community composition immediately after the tropical cyclone, decreased in importance over time. Our study indicates that rapid reformation of insect communities involved sequential landscape-level dynamics. Cyclone-resistant life cycle stages apparently survived in some, perhaps random locations within the overall salt marsh landscape. Subsequently, stochastic patterns of immigration of mobile life cycle stages resulted in rapid reformation of local communities. Post-cyclone direct regeneration of salt marsh insect communities resulted from low resistance, coupled with high landscape-level resilience via re-immigration. Our study suggests that the extent of direct regeneration of local salt marsh insect communities might change with the size of larger marsh landscapes within which they are imbedded.  相似文献   

19.
Plant functional characteristics may drive plant species richness effects on ecosystem processes. Consequently, the focus of biodiversity–ecosystem functioning (BEF) experiments has expanded from the manipulation of plant species richness to manipulating functional trait composition. Involving ecophysiological plant traits in the experimental design might allow for a better understanding of how species loss alters ecosystem processes. Here we provide the theoretical background, design and first results of the ‘Trait-Based Biodiversity Experiment’ (TBE), established in 2010 that directly manipulates the trait composition of experimental plant communities.Analysis of six plant traits related to resource acquisition and use were analyzed using principal component analysis of 60 grassland species. The resulting two main axes describe gradients in functional similarity, and were used as the basis for designing plant communities with different functional and species diversity levels. Using such an approach allowed us to manipulate different levels of complementarity in spatial and temporal plant resource acquisition. In contrast to previous biodiversity experiments, the TBE is designed according to more realistic scenarios of non-random species loss along orthogonal axes of species trait dissimilarities. This allows us to tease apart the relative importance of selection and complementarity effects on multiple ecosystem processes, and to mechanistically study the consequences of plant community simplification.  相似文献   

20.
Beta多样性通常指群落在时间和空间上物种组成的差异, 包括物种周转组分和物种丰富度差异组分。驱动beta多样性格局形成的生态过程决定了群落的时空动态, 然而关于beta多样性及其两个组分格局形成的驱动力还存在较多争议。以往研究表明, beta多样性的格局存在取样尺度的依赖性, 驱动其形成的生态过程在不同取样尺度下的相对重要性也随之改变。本研究以哀牢山亚热带中山湿性常绿阔叶林20 ha动态监测样地为研究对象, 在不同取样尺度上, 将样方间的Bray-Curtis指数分解为物种周转组分和物种丰富度差异组分, 通过典范冗余分析和方差分解的方法揭示环境过滤和扩散限制对于beta多样性及其两个组分格局形成的相对重要性及其尺度依赖性。结果表明: (1) beta多样性、物种周转组分和物种丰富度差异组分均随取样尺度的增大而减小。在不同取样尺度下, 物种周转组分对于beta多样性的贡献始终占主导地位。(2)随着取样尺度的增大, 环境过滤驱动beta多样性格局形成的相对重要性逐渐增加, 而扩散限制的相对重要性逐渐降低。本研究进一步证实了取样尺度在beta多样性格局形成及其驱动力定量评价中的重要性, 今后的研究需要进一步解析上述尺度效应的形成机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号