首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Bacteriophages were added to milk fermented byStreptococcus raffinolactis cells immobilized in calcium alginate. Beads containing the immobilized streptococci were used for five consecutive fermentations; pH, free cell and bacteriophage counts were estimated. Free cells increased from 5×106 to 3×108 per mL of milk, over the successive fermentations. Addition of bacteriophages reduced the free cell count by almost 1000 after 3 fermentations, but a gradual increase occurred subsequently. Bacteriophages were inoculated at 100 per mL and gradually attained 5×109 per mL in the system. Rinsing of the system did not have a substantial influence on free cell or phage counts. Presence of bacteriophage reduced slightly the acidification rate in the system.Bacteriophage numeration by two layer agar method gave better results than by most probable number (MPN). MPN counts were greatly influenced byS. raffinolactis inoculation level.Contribution # 099  相似文献   

2.
Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 °C, while incubation at 40 °C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51000 units ml–1 and 25000 units ml–1, respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.  相似文献   

3.
Samples of camel's milk collected from different zones of Morocco were analysed to evaluate their microbiological quality and to identify predominating lactic acid bacteria (LAB). The following average colony-forming units (c.f.u.s) of aerobic total count, enterococci, faecal and total coliforms, LAB, yeasts,Staphylococcus aureus and spores of sulphite-reducing clostridia were recorded: 6.2 × 107, 2.9 × 104, 1.6 × 104, 7.0 × 106, 1.0 × 107, 3.8 × 104, 1.3 × 105 and 6.0 c.f.u./ml, respectively. The enumeration results were markedly variable and coliforms were not detected in 1 ml of some samples. Bacteriological identification revealed a definite dominance of enterococci with Enterococcus faecalis as the main representative species. Besides Enterococcus, other genera including Pediococcus (28.2%), Streptococcus (4%), Lactococcus (8%) and Leuconostoc(1%) were isolated on de Man, Rogosa and Sharp (MRS) agar.  相似文献   

4.
In sterilized skim milk or sterilized 10% solution of dry skim milk at 120°C for 15 min, Lactobacillus bulgaricus, Lactobacillus helveticus and Streptococcus lactis were cultivated for 7 days at given temperature.

Both NCN (non casein type nitrogen) content and pH in each culture of lactic acid bacteria were rapidly decreased until 2 days after cultivation, But NCN content increased and the pH change got small after 3 days cultivation.

Caseins prepared from the cultures of these three kinds of lactic acid bacteria were examined electrophoretically. From the results of electrophoresis of these caseins, we have concluded that α-casein could be hydrolyzed by these lactic acid bacteria. And, it seemed that β-casein could not be hydrolyzed by these lactic acid bacteria.

Rennet easily hydrolyzed casein treated with L. bulgaricus and L. helveticus but hardly hydrolyzed that treated with S. lactis compared with control-casein. Caseins treated with L. bulgaricus and L. helveticus were hydrolyzed easier than control-casein.

Particle weights of caseins prepared from fermented milk by lactic acid bacteria, Streptococcus cremoris, Streptococcus lactis, Lactobacillus bulgaricus and Lactobacillus helveticus, and of hydrolyzed casein by rennet, trypsin or pepsin were measured according to the light scattering experiment.

Particle weights of various treated caseins were larger than that of raw native casein at both pH 7.0 and 12.0. And the heating caused the polymerization of casein to large particle.  相似文献   

5.
In the present study, a total of 80 presumed lactic acid bacteria (LAB) were isolated from camel milk. Selected LAB were identified as Lactococcus lactis (cam 12), Enterococcus lactis (cam 14) and Lactobacillus plantarum (cam 15) and their potential were tested by tolerance & de-conjugation of bile salts, antimicrobial activity, surface hydrophobicity and adhesion potential) along with this of probiotics were evaluated for curd formation and assessed for sensory properties and syneresis. Selected LABs showed antimicrobial activity against wide range of pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherchiaia. coli). LAB (cam 12, cam 14 and cam15) were highly sceptible to chloramphenicol, vancomycin, and tetracyclin. In vitro adhesion studies with Caco-2 cells demonstrated strong adhesion activity with hydrophobicity (99%) was observed. Acute oral toxicity of E. lactis and L. plantarum showed non-toxic, non-virulent and safe for industrial application. The study provides potential LAB which may act as a substitute of functional food, synthetic feed and industrial curd formulation with in the shortest span (240 min at 28–32 °C).  相似文献   

6.
Summary Diacetyl production by (Citr*)Lactococcus lactis subsp.lactis 3022 was found to be an oxygen-dependent reaction. The diacetyl production by the cells immobilized in conventional Ca-alginate gel beads (Diameter: 3 mm) was lower than that of the cells immobilized in Ca-alginate gel fibers (Diameter: 0.2 mm), probably because oxygen transfer to the immobilized cells is better in gel fibers than in gel beads.  相似文献   

7.
Summary The aim of this study was to determine the effect of low pressure-homogenization of lactic acid bacteria (LAB) on the development of proteolysis in the slurry medium. For the slurry, the milk was pasteurized at 65 °C for 30 min, cooled to 32 °C and coagulated. The curd obtained was blended; the dry matter was adjusted to 30% by adding distilled water, placed into the flasks and autoclaved. The LAB Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. cremoris, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus helveticus were used in cheese slurry. Homogenization was performed at 30 MPa and 40 °C. The cheese slurries were incubated with and without homogenized cultures at 9 and 30 °C for up to 72 h. During incubation, the changes in trichloroacetic acid-soluble nitrogen (TCA-SN) and phosphotungstic acid-soluble nitrogen (PTA-SN) as well as pH were monitored. The results showed that pH development was slower in the slurries to which homogenized culture was added. Higher TCA-SN and PTA-SN values were obtained from the slurries incubated at 30 °C. Moreover, higher TCA-SN and PTA-SN values were found in the slurries incubated with homogenized mesophilic culture and Lb. helveticus (P<0.05). The results suggested that homogenization of the cultures was a promising method for the acceleration of cheese ripening.  相似文献   

8.
We used culture- and molecular-biology-based methods to investigate microbial diversity in the traditional Mongolian fermented milks “Airag” (fermented mare’s milk) and “Tarag” (fermented milk of cows, yaks, goats, or camels). By rRNA or functional gene sequencing, we identified 367 lactic acid bacteria (LAB) strains and 152 yeast strains isolated from 22 Airag and 31 Tarag samples. The total concentration of LAB in Airag (107.78 ± 0.50 c.f.u. ml–1; mean ± SD) was significantly lower (P < 0.01) than in Tarag (108.35 ± 0.62 c.f.u. ml−1), whereas the total concentration of yeasts in Airag (107.41 ± 0.61 c.f.u. ml-1) was significantly higher (P < 0.01) than in Tarag (105.86 ± 1.29 c.f.u. ml-1). Lactobacillus helveticus and Lactobacillus kefiranofaciens were isolated from Airag as the predominant LAB strains at levels of about 107 c.f.u. ml−1, whereas Lactobacillus delbrueckii subsp. bulgaricus, L. helveticus, and Streptococcus thermophilus were the predominant isolates from Tarag at about 107 c.f.u. ml−1. The lactose-fermenting Kluyveromyces marxianus was isolated predominantly from Airag as its major alcoholic fermentation component. Non-lactose-fermenting yeasts such as Saccharomyces cerevisiae, Issatchenkia orientalis, and Kazachstania unispora were the predominant isolates from Tarag, at about 105 c.f.u. ml−1. The apparent geographic differences in the L. kefiranofaciens and S. thermophilus contents of Tarag strongly suggested that differences among the animal species from which the milk was sourced, rather than geographic distances, were the most important factors influencing the diversity of the microbial composition of traditional fermented milks in Mongolia.  相似文献   

9.
Ten γ-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) strains were isolated from kimchi and yoghurt. The strain B, isolated from kimchi showed the highest GABA-producing ability (3.68 g/L) in MRS broth with 1% monosodium glutamate (MSG). Strain B was identified as Lactococcus lactis subsp. lactis. The GABA-producing ability of L. lactis B was investigated using brown rice juice, germinated soybean juice and enzymolyzed skim milk as medium compositions. The D-optimal mixture design was applied to optimize the ratio of the three kinds of components in the media. The results showed that when the mixing ratio of brown rice juice, germinated soybean juice and enzymolyzed skim milk was 33:58:9 (v:v:v), the maximum GABA yield of L. lactis B was 6.41 g/L.  相似文献   

10.
The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The concentration of the last was always below 15% (wt/wt), which is related to the hydrophilic character revealed by water contact angles of less than 30°. The surfaces of L. lactis cells had a polysaccharide concentration about twice that of proteins. The S-layer of L. helveticus was either interrupted or crossed by polysaccharide-rich compounds; the concentration of the latter was higher in the stationary growth phase than in the exponential growth phase. Further progress was made in the interpretation of XPS data in terms of chemical functions by showing that the oxygen component at 531.2 eV contains a contribution of phosphate in addition to the main contribution of the peptide link. The isoelectric points were around 2 and 3, and the electrophoretic mobilities above pH 5 (ionic strength, 1 mM) were about −3.0 × 10−8 and −0.6 × 10−8 m2 s−1 V−1 for L. lactis and L. helveticus, respectively. The electrokinetic properties of the latter reveal the influence of carboxyl groups, while the difference between the two strains is related to a difference between N/P surface concentration ratios, reflecting the relative exposure of proteins and phosphate groups at the surface.  相似文献   

11.
Proteolytic systems of lactic acid bacteria   总被引:3,自引:0,他引:3  
Lactic acid bacteria (LAB) have a very long history of use in the manufacturing processes of fermented foods and a great deal of effort was made to investigate and manipulate the role of LAB in these processes. Today, the diverse group of LAB includes species that are among the best-studied microorganisms and proteolysis is one of the particular physiological traits of LAB of which detailed knowledge was obtained. The proteolytic system involved in casein utilization provides cells with essential amino acids during growth in milk and is also of industrial importance due to its contribution to the development of the organoleptic properties of fermented milk products. For the most extensively studied LAB, Lactococcus lactis, a model for casein proteolysis, transport, peptidolysis, and regulation thereof is now established. In addition to nutrient processing, cellular proteolysis plays a critical role in polypeptide quality control and in many regulatory circuits by keeping basal levels of regulatory proteins low and removing them when they are no longer needed. As part of the industrial processes, LAB are challenged by various stress conditions that are likely to affect metabolic activities, including proteolysis. While environmental stress responses of LAB have received increasing interest in recent years, our current knowledge on stress-related proteolysis in LAB is almost exclusively based on studies on L. lactis. This review provides the current status in the research of proteolytic systems of LAB with industrial relevance.  相似文献   

12.
Milk fermented with Lactobacillus helveticus (L. helveticus) contains small peptides such as isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP), which inhibit the angiotensin converting enzyme (ACE). We investigated the effects of L. helveticus fermented milk whey (Lh-whey) and its components, sour milk whey, calcium and IPP and VPP peptides, on bone cells in vitro. An osteoblast assay was performed by determining the amount of deposited calcium as an index of bone formation in cultures of mouse osteoblasts formed from bone marrow-derived osteoblast precursor cells. An osteoclast assay was performed by determining the activity of tartrate-resistant acid phosphatase released into the culture medium in cultures of mouse osteoclasts formed from bone marrow-derived osteoclast precursor cells. The Lh-whey increased bone formation 1.3-1.4 times with the 1 × 10−5, 1 × 10−4 and 1 × 10−3 solutions. The IPP and VPP peptides also demonstrated a significant 5-fold activation of bone formation in in vitro osteoblast cultures, whereas the sour milk whey and calcium had no effect. No significant effects were observed on osteoclasts in vitro with any of the study products. L. helveticus fermented milk whey contains bioactive components that increase osteoblastic bone formation in vitro. The effect may be due to the ACE-inhibitory IPP and VPP peptides, which showed a similar effect to that of the L. helveticus fermented milk whey.  相似文献   

13.
Summary Two thermophilic strains of Lactobacillus were transformed by electroporation; L.fermentum with a maximum of frequency of 1&#x00D7;105/ug of plasmid vector pPSC20DNA and 1.4&#x00D7;103/ug pSA3DNA. L.helveticus showed a very low frequency of transformation, from 9 to 26 transformants/ug DNA in all the experiments carried out with both the vectors. While L.fermentum transformants were very stable, in L.helveticus the acquired plasmid was lost after 30&#x2013;50 generations.  相似文献   

14.
Summary Diacetyl production by (Citr+)Lactococcus lactis subsp.lactis 3022 cells immobilized in Ca-alginate fine fibers with single layer in the presence of catalase was three times higher than that in the absence of catalase. A co-immobilized culture system of the lactic acid bacterial cells (outer) and the homogenized bovine liver (inner layer) in Ca-alginate fibers with double gel layers was developed. The culture system gave high diacetyl productivity (30 mg/l) for ten repeated batch cultures.  相似文献   

15.
Aims: The microbial quality of farm bulk‐tank raw milk produced in Estonia during years 2004–2007 was investigated. Methods and Results: Bulk‐tank milk samples were analysed for lactic acid bacteria count (LABC), psychrotrophic bacteria count (PBC), aerobic spore‐forming bacteria count (ASFBC), total bacterial counts using BactoScan and somatic cell count (SCC) using Fossomatic. Randomly selected psychrotrophic isolates were subjected to 16S–23S PCR‐ribotyping. LABC remained below 104 CFU ml?1 in most samples, while psychrotrophic micro‐organisms dominated in 60% of farms. PBC ranged from 4·2 × 102 to 6·4 × 104 CFU ml?1, and ASFBC varied from 5 to 836 CFU ml?1. Conclusions: In general, the microbiological quality of the farm bulk‐tank milk was good – more than 91% of samples contained <50 000 CFU ml?1, and SCC in the majority of samples did not exceed the internationally recommended limits. Genus Pseudomonas spp. was the dominating spoilage flora with Pseudomonas fluorescens as the prevailing species. Significance and Impact of the Study: Specific bacterial groups (LABC, PBC and ASFBC), not analysed routinely by dairies, were determined in bulk‐tank raw milk of numerous dairy farms during 4‐year period. Based on the survey, dairy plants can better control their supply chains and select farms (milk) for the production of specific products, i.e. milk with low PBC and high LABC for cheesemaking.  相似文献   

16.
The stimulatory effect of aqueous suspensions of Spirulina platensis dry biomass extracted at pH 6.8 and 5.5 was studied on four lactic acid bacteria (LAB) grown in milk. The addition of dry S. platensis to milk (6 mg/ml) stimulated growth of Lactococcus lactis by 27%. The growth of other strains was also promoted. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Summary Mesophilic lactic acid bacteria were immobilized in calcium alginate gel and added to pasteurized 15% fat cream at a 1.6x109 bacteria per ml inoculation level. A pH of 5.5 was obtained in only two hours while it took 4 hours under classical conditions. Once the immobilized cells were removed, the cream contained 6.1x106 lactic bacteria per ml which was almost 400 times less than the bacterial population obtained at pH 5.5 under a classical fermentation. The fermented cream obtained from immobilized cells showed much less overacidification under subsequent refrigeration.  相似文献   

18.
Whole cells, cytoplasms and peptidoglycans of ten different lactic acid bacteria (LAB) were tested for in vitro cytotoxicity on diverse cancer cell lines using the 3H-thymidine incorporation assay. The peptidoglycans and cytoplasm fractions, as well as heat-killed whole cells of LAB, had significant antiproliferative activities against several cancer cell lines. In particular, the cytoplasm fractions exhibited marked direct antiproliferative activities against colon and gastric cancer cell lines, whereas the peptidoglycans retarded growth of colon and bladder cancer cell lines. The cytoplasm fractions of Bifidobacterium longum and Lactococcus lactis ssp. lactis inhibited proliferation of two cancer cell lines by 50% at 33 and 23 g ml–1 for SNUC2A (a human colon adenocarcinoma cell line) and 17 and 11 g ml–1 for SNU-1 (a human gastric cancer cell line), respectively.  相似文献   

19.
Purpose

Lactic acid bacteria (LAB) are traditionally employed in the food industry. LAB strains from goat milk may also present probiotic potential, and it is fundamental to study the safety and functionality aspects which are desirable for their use in food. The objective of this study was to verify the probiotic potential of lactic bacteria isolated from goat milk.

Methods

The presence of safety-related virulence factors (hemolytic activity, gelatinase production, coagulase, and sensitivity to antibiotics) as well as functionality (exopolysaccharide (EPS) production, proteolytic activity, autoaggregation, gas production, survival in the gastrointestinal tract, and antimicrobial activity against bacteria that impair oral health) were determined.

Result

The selected LAB strains are safe against the evaluated parameters and have characteristics of possible probiotic candidates. Especially L. plantarum (DF60Mi) and Lactococcus lactis (DF04Mi) have potential to be added to foods because they have better resistance to simulated gastrointestinal conditions. In addition, they are isolated with already proven antimicrobial activity against Listeria monocytogenes, an important food-borne pathogen. DF60Mi was able to produce EPS (exopolysaccharides). LS2 and DF4Mi strains, both Lactococcus lactis subsp. lactis, demonstrated antimicrobial activity against S. mutans ATCC 25175, a recurrent microorganism in oral pathologies, mainly caries.

Conclusion

This study provides subsidies for future exploration of the potentialities of these LAB strains for both the development of new functional foods and for application in oral health.

  相似文献   

20.
The ability to utilize lactose is requisite for lactic acid bacteria used as starters in the dairy industry. Modern genetic recombination techniques have facilitated the introduction of the lactose-positive phenotype into bacteria such as Pediococcus species, which traditionally have not been used as dairy starters. This study investigated lactose and galactose uptake along with phospho-β-galactosidase activity in pediococci that had been transformed with a Latococcus lactis lactose plasmid. Lactose-positive transformants, Pediococcus acidilactici SAL and Pediococcus pentosaceus SPL-2, demonstrated an ability to accumulate [14C]lactose at a rate greater than the Lactococcus lactis control. Phospho-β-galactosidase activity was also higher in transformants versus Lactococcus lactis. Studies of [3H]galactose uptake suggested that a wild-type galactose transport system and the introduced lactose phosphotransferase system both functioned in galactose uptake by Pediococcus spp. transformants. Significantly lower levels of free galactose were detected in milk fermented with Lactobacillus helveticus LH100 and SAL or SPL-2 than in milk fermented with a LH100 plus Streptococcus thermophilus TA061 control starter blend. Received: 16 September 1997 /  Received revision: 11 November 1997 / Accepted: 21 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号