首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Attaching and effacing (A/E) pathogens such as enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) cause serious global health problems. These bacteria colonize the gastrointestinal system, attach to intestinal epithelial cells, efface (collapse) infected cell microvilli and cause overt diarrhoea that may ultimately result in death of the host. Although pathogenically induced diarrhoea is a significant global health issue, the molecular mechanisms that underlie this disease remain largely unknown. A natural murine infection model, employing the A/E pathogen Citrobacter rodentium, has been helpful in studying the diseases in vivo. C. rodentium colonize the colon at high levels, attach to colonocytes, efface microvilli and cause hyperplasia and inflammation in infected mice. As the disease progresses, the mice develop a diarrhoea-like phenotype. Aquaporin (AQP) water channels have been proposed to play a role in the normal dehydration of faecal contents. Here we examine whether C. rodentium infection may alter AQP localization in colonocytes. We demonstrate that during infection, AQP2 and AQP3 are mislocalized from their normal location along cell membranes to the cell cytoplasm. The change in localization of these proteins correlates with the diarrhoea-like phenotype present in infected mice. Mice that recover from the infection at 28-35 days post inoculum regain their normal membrane AQP localization. The altered localization of AQPs is partially dependent on the bacterial type III effector proteins EspF and EspG. We conclude that altered AQP localization may be a contributing factor to diarrhoea during bacterial infection.  相似文献   

2.
Enterohemorrhagic Escherichia coli (EHEC) is a water- and food-borne pathogen that causes hemorrhagic colitis. EHEC uses a type III secretion system (T3SS) to translocate effector proteins that subvert host cell function. T3SS-substrates encoded outside of the locus of enterocyte effacement are important to E. coli pathogenesis. We discovered an EHEC secreted protein, NleF, encoded by z6020 in O-island 71 of E. coli EDL933 that we hypothesized to be a T3SS substrate. Experiments are presented that probe the function of NleF and its role in virulence. Immunoblotting of secreted and translocated proteins suggest that NleF is secreted by the T3SS and is translocated into host cells in vitro where it localizes to the host cytoplasm. Infection of HeLa cells with E. coli possessing or lacking nleF and transient expression of NleF-GFP via transfection did not reveal a significant role for NleF in several assays of bacterial adherence, host cytoskeletal remodeling, or host protein secretion. However, competitive coinfection of mice with Citrobacter rodentium strains possessing or lacking nleF suggested a contribution of NleF to bacterial colonization. Challenge of gnotobiotic piglets also revealed a role for NleF in colonization of the piglet colon and rectoanal junction.  相似文献   

3.
Infections by attaching and effacing (A/E) bacterial pathogens, such as Escherichia coli O157:H7, pose a serious threat to public health. Using a mouse A/E pathogen, Citrobacter rodentium, we show that interleukin-22 (IL-22) has a crucial role in the early phase of host defense against C. rodentium. Infection of IL-22 knockout mice results in increased intestinal epithelial damage, systemic bacterial burden and mortality. We also find that IL-23 is required for the early induction of IL-22 during C. rodentium infection, and adaptive immunity is not essential for the protective role of IL-22 in this model. Instead, IL-22 is required for the direct induction of the Reg family of antimicrobial proteins, including RegIIIbeta and RegIIIgamma, in colonic epithelial cells. Exogenous mouse or human RegIIIgamma substantially improves survival of IL-22 knockout mice after C. rodentium infection. Together, our data identify a new innate immune function for IL-22 in regulating early defense mechanisms against A/E bacterial pathogens.  相似文献   

4.
Attaching and effacing Escherichia coli (AEEC) employ type III secretion system (T3SS) to secrete effector proteins into host cells and regulate their function. Here we have investigated T3SS genes of AEEC for non-neutral evolution. Our analysis revealed non-neutral evolution in three genes (nleE1, nleB2 and nleD) which encode effector proteins. These genes are located outside the locus of enterocyte effacement (LEE). In general, non-LEE effector genes show greater deviation from neutral evolution than LEE effector genes. These results suggest that effector genes located outside LEE are under greater selection pressure than those present in LEE.  相似文献   

5.
Subversion of actin dynamics by EPEC and EHEC   总被引:6,自引:0,他引:6  
During the course of infection, enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) subvert the host cell signalling machinery and hijack the actin cytoskeleton to tighten their interaction with the gut epithelium, while avoiding phagocytosis by professional phagocytes. Much progress has been made recently in our understanding of how EPEC and EHEC regulate the pathways leading to local activation of two regulators of actin cytoskeleton dynamics, the Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex. A recent highlight is the unravelling of functions for effector proteins (particularly Tir, TccP, Map and EspG/EspG2) that are injected into the host cell by a type III secretion system.  相似文献   

6.
Phosphoinositides are short-lived lipids, whose production at specific membrane locations in the cell enables the tightly controlled recruitment or activation of diverse cellular effectors involved in processes such as cell motility or phagocytosis. Bacterial pathogens have evolved molecular mechanisms to subvert phosphoinositide metabolism in host cells, promoting (or blocking) their internalization into target tissues, and/or modifying the maturation fate of their proliferating compartments within the intracellular environment.  相似文献   

7.
8.
9.
Enteric infections with attaching/effacing lesion-inducing bacterial pathogens are a worldwide health problem. A murine infection model with one such pathogen, Citrobacter rodentium, was used to elucidate the importance of the pleiotropic immune regulator, IL-6, in the pathogenesis of infection. IL-6 was strongly induced in colonic epithelial cells and macrophages upon C. rodentium infection and was required for effective host defense, because mice lacking IL-6 failed to control bacterial numbers 2-3 wk after infection and exhibited increased mortality. IL-6 was not needed for mounting effective T and B cell responses to the pathogens, nor was it important for induction of IFN-gamma or TNF-alpha, cytokines involved in host defense against the bacteria, or the antibacterial effector, NO. Instead, IL-6 played a key role in mucosal protection, since its absence was associated with marked infection-induced apoptosis in the colonic epithelium and subsequent ulcerations. Cell culture studies confirmed that IL-6 protected colon epithelial cells directly against inducible apoptosis, which was accompanied by increased expression of an array of genes encoding antiapoptotic proteins, including Bcl-x(L), Mcl-1, cIAP-2, and Bcl-3. Ulcerations appeared to be pathogenetically important, because bacteria localized preferentially to those regions, and chemically induced colonic ulcerations promoted bacterial colonization. Furthermore, blood components likely present in ulcer exudates, particularly alanine, asparagine, and glycine, promoted bacterial growth. Thus, IL-6 is an important regulator of host defense against C. rodentium by protecting the mucosa against ulcerations which can act as a microbial niche for the bacteria.  相似文献   

10.
Enterohaemorrhagic Escherichia coli (EHEC) colonizes the intestine and causes bloody diarrhoea and kidney failure by producing Shiga toxin. Upon binding intestinal cells, EHEC triggers a change in host cell shape, generating actin ‘pedestals’ beneath bound bacteria. To investigate the importance of pedestal formation to disease, we infected genetically engineered mice incapable of supporting pedestal formation by an EHEC‐like mouse pathogen, or wild type mice with a mutant of that pathogen incapable of generating pedestals. We found that pedestal formation promotes attachment of bacteria to the intestinal mucosa and vastly increases the severity of Shiga toxin‐mediated disease.  相似文献   

11.
Attaching and effacing Escherichia coli (AEEC) are extracellular pathogens that induce the formation of actin-rich structures at their sites of attachment to eukaryotic host cells. We analysed whether small GTP-binding proteins of the Rho- and Ras-subfamilies, which control the cellular actin system, are essential for these bacterial-induced microfilament reorganizations. For this purpose we specifically inactivated them using the Clostridium difficile toxins TcdB-10463 and TcdB-1470. Such treatment led to a dramatic breakdown of the normal actin cytoskeleton, but did not abrogate the bacterial-induced actin rearrangements. Our data therefore indicate that the microfilament reorganizations induced by AEEC are independent of those small GTP-binding proteins that under normal conditions control the dynamics and maintenance of the actin cytoskeleton.  相似文献   

12.
13.
Mammalian phagocytes control bacterial infections effectively through phagocytosis, the process by which particles engulfed at the cell surface are transported to lysosomes for destruction. However, intracellular pathogens have evolved mechanisms to avoid this fate. Many bacterial pathogens use specialized secretion systems to deliver proteins into host cells that subvert signaling pathways controlling membrane transport. These bacterial effectors modulate the function of proteins that regulate membrane transport and alter the phospholipid content of membranes. Elucidating the biochemical function of these effectors has provided a greater understanding of how bacteria control membrane transport to create a replicative niche within the host and provided insight into the regulation of membrane transport in eukaryotic cells.  相似文献   

14.
Subversion of the chemokine world by microbial pathogens   总被引:2,自引:0,他引:2  
It is well known that microbial pathogens are able to subvert the host immune system in order to increase microbial replication and propagation. Recent research indicates that another arm of the immune response, that of the chemokine system, is also subject to this sabotage, and is undermined by a range of microbial pathogens, including viruses, bacteria, and parasites. Currently, it is known that the chemokine system is being challenged by a number of mechanisms, and still more are likely to be discovered with further research. Here we first review the general mechanisms by which microbial pathogens bypass mammalian chemokine defences. Broadly, these can be grouped as viral chemokine interacting proteins, microbial manipulation of host chemokine and chemokine receptor expression, microbial blockade of host chemokine receptor signalling, and the largely hypothetical mechanisms of microbial enhancement of host anti-chemokine networks (including digestion, antagonism, and neutralisation of host chemokines and chemokine receptors). We then discuss the potential results of these interactions in terms of outcome of infection.  相似文献   

15.
Pathogenic bacteria continuously encounter multiple forms of stress in their hostile environments, which leads to DNA damage. With the new insight into biology offered by genome sequences, the elucidation of the gene content encoding proteins provides clues toward understanding the microbial lifestyle related to habitat and niche. Campylobacter jejuni, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis , the pathogenic Neisseria, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus are major human pathogens causing detrimental morbidity and mortality at a global scale. An algorithm for the clustering of orthologs was established in order to identify whether orthologs of selected genes were present or absent in the genomes of the pathogenic bacteria under study. Based on the known genes for the various functions and their orthologs in selected pathogenic bacteria, an overview of the presence of the different types of genes was created. In this context, we focus on selected processes enabling genome dynamics in these particular pathogens, namely DNA repair, recombination and horizontal gene transfer. An understanding of the precise molecular functions of the enzymes participating in DNA metabolism and their importance in the maintenance of bacterial genome integrity has also, in recent years, indicated a future role for these enzymes as targets for therapeutic intervention.  相似文献   

16.
B China  V Pirson    J Mainil 《Applied microbiology》1996,62(9):3462-3465
Attaching and effacing Escherichia coli is a new causal agent of diarrhea in calves. Its major virulence factors are the intimin protein, encoded by the eaeA gene, and the Shiga-like toxins, encoded by slt genes. Because the sequences of these genes are available, we selected specific primers to amplify each virulence gene so as to develop a new identification test based on multiplex amplification of virulence-associated genes. Of 30 tested strains, 14 were eaeA+, 15 were eaeA+ slt-I+, 1 was eaeA+ slt-I+ slt-II+, and 1 was eaeA+ slt-II+. The method proved in our hands to be fast and specific and in perfect correlation with the hybridization method.  相似文献   

17.
Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs) into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called "terminal reassortment." In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that causes watery diarrhea and hemorrhagic colitis. In this study, we identified StcE, a secreted zinc metalloprotease that contributes to intimate adherence of EHEC to host cells, in culture supernatants of atypical Shigella boydii 13 (Shigella B13) strains. Further examination of the Shigella B13 strains revealed that this cluster of pathogens does not invade but forms pedestals on HEp-2 cells similar to EHEC and enteropathogenic E.?coli. This study also demonstrates that atypical Shigella B13 strains are more closely related to attaching and effacing E.?coli and that their evolution recapitulates the progression from ancestral E.?coli to EHEC.  相似文献   

19.
Biochemistry and cell signaling taught by bacterial effectors   总被引:1,自引:0,他引:1  
Bacterial virulence often relies on secreted effectors that modulate eukaryotic signal transduction. Recent studies provide a collection of examples in which bacterial effectors carry out unprecedented posttranslational modifications of key signaling molecules or organize a new signaling network. OspF and YopJ families of effectors use novel modification activities to block kinase phosphoactivation. Targeting of the ubiquitin system by IpaH and Cif/CHBP families provides insights into host ubiquitin signaling. Manipulation of small GTPases by VopS/IbpA and SidM suggests previously underappreciated regulation of signaling. Several other effectors, including SifA and EspG, organize newly discovered signaling networks in membrane trafficking. Studies of these effectors can generate new knowledge in enzyme catalysis and provide new angles for furthering our understanding of biochemical regulation of important signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号