首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we use simulations from seven global vegetation models to provide the first multi‐model estimate of fire impacts on global tree cover and the carbon cycle under current climate and anthropogenic land use conditions, averaged for the years 2001–2012. Fire globally reduces the tree covered area and vegetation carbon storage by 10%. Regionally, the effects are much stronger, up to 20% for certain latitudinal bands, and 17% in savanna regions. Global fire effects on total carbon storage and carbon turnover times are lower with the effect on gross primary productivity (GPP) close to 0. We find the strongest impacts of fire in savanna regions. Climatic conditions in regions with the highest burned area differ from regions with highest absolute fire impact, which are characterized by higher precipitation. Our estimates of fire‐induced vegetation change are lower than previous studies. We attribute these differences to different definitions of vegetation change and effects of anthropogenic land use, which were not considered in previous studies and decreases the impact of fire on tree cover. Accounting for fires significantly improves the spatial patterns of simulated tree cover, which demonstrates the need to represent fire in dynamic vegetation models. Based upon comparisons between models and observations, process understanding and representation in models, we assess a higher confidence in the fire impact on tree cover and vegetation carbon compared to GPP, total carbon storage and turnover times. We have higher confidence in the spatial patterns compared to the global totals of the simulated fire impact. As we used an ensemble of state‐of‐the‐art fire models, including effects of land use and the ensemble median or mean compares better to observational datasets than any individual model, we consider the here presented results to be the current best estimate of global fire effects on ecosystems.  相似文献   

2.
Pyrogeographic models,feedbacks and the future of global fire regimes   总被引:1,自引:0,他引:1  
Conceptual and phenomenological macroecological models of current global fire activity have demonstrated the overwhelming control exerted by primary productivity. Fire activity is very high in savanna regions with intermediate primary productivity, and very low in both densely forested regions with high productivity and arid/cold regions with low productivity. However, predicting future global fire activity using such macroecological models of fire's global ‘niche’ may not be possible because of the feedbacks between fire, climate and vegetation that underpin the fire?productivity relationship. Improving forecasts of global fire activity demands the use of dynamic models to determine how climate, CO2, vegetation (i.e. canopy closure and plant functional types) and primary productivity constrain fire and evaluation of the strength of feedbacks amongst these variables.  相似文献   

3.
Fires burning the vast grasslands and savannas of Africa significantly influence the global carbon cycle. Projecting the impacts of future climate change on fire‐mediated biogeochemical processes in these dry tropical ecosystems requires understanding of how various climate factors influence regional fire regimes. To examine climate–vegetation–fire linkages in dry savanna, we conducted macroscopic and microscopic charcoal analysis on the sediments of the past 25 000 years from Lake Challa, a deep crater lake in equatorial East Africa. The charcoal‐inferred shifts in local and regional fire regimes were compared with previously published reconstructions of temperature, rainfall, seasonal drought severity, and vegetation dynamics to evaluate millennial‐scale drivers of fire occurrence. Our charcoal data indicate that fire in the dry lowland savanna of southeastern Kenya was not fuel‐limited during the Last Glacial Maximum (LGM) and Late Glacial, in contrast to many other regions throughout the world. Fire activity remained high at Lake Challa probably because the relatively high mean‐annual temperature (~22 °C) allowed productive C4 grasses with high water‐use efficiency to dominate the landscape. From the LGM through the middle Holocene, the relative importance of savanna burning in the region varied primarily in response to changes in rainfall and dry‐season length, which were controlled by orbital insolation forcing of tropical monsoon dynamics. The fuel limitation that characterizes the region's fire regime today appears to have begun around 5000–6000 years ago, when warmer interglacial conditions coincided with prolonged seasonal drought. Thus, insolation‐driven variation in the amount and seasonality of rainfall during the past 25 000 years altered the immediate controls on fire occurrence in the grass‐dominated savannas of eastern equatorial Africa. These results show that climatic impacts on dry‐savanna burning are heterogeneous through time, with important implications for efforts to anticipate future shifts in fire‐mediated ecosystem processes.  相似文献   

4.
Aim The aims of this paper are to reconstruct the vegetation and fire history over the past 2000 years in a well‐preserved rain‐forest area, to understand interactions between climate, fire, and vegetation, and to predict how rain forest responds to global warming and increased intensity of human activity. Location Xishuangbanna, south‐west China, 21–22° N, 101–102° E. Methods Phytolith (plant opal silica bodies) morphotypes, assemblages, and indices were used to reconstruct palaeovegetation and palaeoclimate changes in detail. Micro‐charcoal particles found in phytolith slides, together with burnt phytoliths and highly weathered bulliform cells, were employed to reconstruct a record of past fire occurrence. A survey of field sediments, lithology, and 14C dating were also employed. Results Phytoliths were divided into 11 groups and classified into 33 well‐described morphotypes according to their shape under light microscopy and their presumed anatomical origins and ecological significance. The phytolith assemblages were divided into six significant zones that reveal a complete history of vegetation changes corresponding to climate variation and fire occurrence. Phytolith assemblages and indices show that the palaeoclimate in the study area is characterized by the alternation of warm–wet and cool–dry conditions. Phytolith and charcoal records reveal that 12 fire episodes occurred. Comparison of burnt phytoliths with an aridity index (Iph) shows that fire episodes have a strong relationship with drought events. Main conclusions Our results indicate that fire occurrence in the tropical rain forest of Xishuangbanna is predominantly under the control of natural climate variability (drought events). Nearly every fire episode is coupled with a climatic event and has triggered vegetation composition changes marked by a pronounced expansion of grasses. This indicates that drought interacts with fire to exert a strong influence on the ecological dynamics of the rain forest. However, the impact of human activity in recent centuries is also significant. Our results are important for understanding the interactions between climate, fire, and vegetation, and for predicting how rain forest responds to global warming and increased human activity.  相似文献   

5.
Global change includes multiple stressors to natural ecosystems ranging from direct climate and land‐use impacts to indirect degradation processes resulting from fire. Humid tropical forests are vulnerable to projected climate change and possible synergistic interactions with deforestation and fire, which may initiate a positive feedback to rising atmospheric CO2. Here, we present results from a multifactorial impact analysis that combined an ensemble of climate change models with feedbacks from deforestation and accidental fires to quantify changes in Amazon Basin carbon cycling. Using the LPJmL Dynamic Global Vegetation Model, we modelled spatio‐temporal changes in net biome production (NBP); the difference between carbon fluxes from fire, deforestation, soil respiration and net primary production. By 2050, deforestation and fire (with no CO2 increase or climate change) resulted in carbon losses of 7.4–20.3 Pg C with the range of uncertainty depending on socio‐economic storyline. During the same time period, interactions between climate and land use either compensated for carbon losses due to wetter climate and CO2 fertilization or exacerbated carbon losses from drought‐induced forest mortality (?20.1 to +4.3 Pg C). By the end of the 21st century, depending on climate projection and the rate of deforestation (including its interaction with fire), carbon stocks either increased (+12.6 Pg C) or decreased (?40.6 Pg C). The synergistic effect of deforestation and fire with climate change contributed up to 26–36 Pg C of the overall decrease in carbon stocks. Agreement between climate projections (n=9), not accounting for deforestation and fire, in 2050 and 2098 was relatively low for the directional change in basin‐wide NBP (19–37%) and aboveground live biomass (13–24%). The largest uncertainty resulted from climate projections, followed by implementation of ecosystem dynamics and deforestation. Our analysis partitions the drivers of tropical ecosystem change and is relevant for guiding mitigation and adaptation policy related to global change.  相似文献   

6.
7.
Recent IPCC projections suggest that Africa will be subject to particularly severe changes in atmospheric conditions. How the vegetation of Africa and particularly the grassland–savanna–forest complex will respond to these changes has rarely been investigated. Most studies on global carbon cycles use vegetation models that do not adequately account for the complexity of the interactions that shape the distribution of tropical grasslands, savannas and forests. This casts doubt on their ability to reliably simulate the future vegetation of Africa. We present a new vegetation model, the adaptive dynamic global vegetation model (aDGVM) that was specifically developed for tropical vegetation. The aDGVM combines established components from existing DGVMs with novel process‐based and adaptive modules for phenology, carbon allocation and fire within an individual‐based framework. Thus, the model allows vegetation to adapt phenology, allocation and physiology to changing environmental conditions and disturbances in a way not possible in models based on fixed functional types. We used the model to simulate the current vegetation patterns of Africa and found good agreement between model projections and vegetation maps. We simulated vegetation in absence of fire and found that fire suppression strongly influences tree dominance at the regional scale while at a continental scale fire suppression increases biomass in vegetation by a more modest 13%. Simulations under elevated temperature and atmospheric CO2 concentrations predicted longer growing periods, higher allocation to roots, higher fecundity, more biomass and a dramatic shift toward tree dominated biomes. Our analyses suggest that the CO2 fertilization effect is not saturated at ambient CO2 levels and will strongly increase in response to further increases in CO2 levels. The model provides a general and flexible framework for describing vegetation response to the interactive effects of climate and disturbances.  相似文献   

8.
Changes in vegetation structure and biogeography due to climate change feedback to alter climate by changing fluxes of energy, moisture, and momentum between land and atmosphere. While the current class of land process models used with climate models parameterizes these fluxes in detail, these models prescribe surface vegetation and leaf area from data sets. In this paper, we describe an approach in which ecological concepts from a global vegetation dynamics model are added to the land component of a climate model to grow plants interactively. The vegetation dynamics model is the Lund–Potsdam–Jena (LPJ) dynamic global vegetation model. The land model is the National Center for Atmospheric Research (NCAR) Land Surface Model (LSM). Vegetation is defined in terms of plant functional types. Each plant functional type is represented by an individual plant with the average biomass, crown area, height, and stem diameter (trees only) of its population, by the number of individuals in the population, and by the fractional cover in the grid cell. Three time‐scales (minutes, days, and years) govern the processes. Energy fluxes, the hydrologic cycle, and carbon assimilation, core processes in LSM, occur at a 20 min time step. Instantaneous net assimilated carbon is accumulated annually to update vegetation once a year. This is carried out with the addition of establishment, resource competition, growth, mortality, and fire parameterizations from LPJ. The leaf area index is updated daily based on prevailing environmental conditions, but the maximum value depends on the annual vegetation dynamics. The coupling approach is successful. The model simulates global biogeography, net primary production, and dynamics of tundra, boreal forest, northern hardwood forest, tropical rainforest, and savanna ecosystems, which are consistent with observations. This suggests that the model can be used with a climate model to study biogeophysical feedbacks in the climate system related to vegetation dynamics.  相似文献   

9.
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process‐based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2 fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post‐fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.  相似文献   

10.
At a broad (regional to global) spatial scale, tropical vegetation is controlled by climate; at the local scale, it is believed to be determined by interactions between disturbance, vegetation and local conditions (soil and topography) through feedback processes. It has recently been suggested that strong fire–vegetation feedback processes may not be needed to explain tree‐cover patterns in tropical ecosystems and that climate–fire determinism is an alternative possibility. This conclusion was based on the fact that it is possible to reproduce observed patterns in tropical regions (e.g. a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire–vegetation feedback processes. We argue that these two mechanisms (feedbacks versus fire–climate control) operate at different spatial and temporal scales; it is not possible to evaluate the role of a process acting at fine scales (e.g. fire–vegetation feedbacks) using a model designed to reproduce regional‐scale pattern (scale mismatch). While the distributions of forest and savannas are partially determined by climate, many studies are providing evidence that the most parsimonious explanation for their environmental overlaps is the existence of feedback processes. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire–vegetation feedbacks are complementary processes at different spatial and temporal scales.  相似文献   

11.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

12.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

13.
The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land‐atmosphere carbon exchange. Previous forest recovery assessments using satellite optical‐infrared normalized difference vegetation index (NDVI) and tower CO2 eddy covariance techniques indicate rapid vegetation recovery within 5–10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post‐fire vegetation response to inform regional recovery assessments. We analyzed a multi‐year (2003–2010) satellite VOD record from the NASA AMSR‐E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post‐fire canopy biomass recovery within 3–7 years, lagging NDVI recovery by 1–5 years. The VOD lag was attributed to slower non‐photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre‐burn conditions was also directly proportional (P < 0.01) to satellite (moderate resolution imaging spectroradiometer) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical‐infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery.  相似文献   

14.
The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 ( Wigley et al. 1991 ), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2‐SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4–3.8 Pg C y?1 during the 1990s, rising to 3.7–8.6 Pg C y?1 a century later. Simulations including climate change show a reduced sink both today (0.6–3.0 Pg C y?1) and a century later (0.3–6.6 Pg C y?1) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate‐induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate change resulting, primarily, from differences in the way that modelled global NPP responds to a changing climate. The simulations illustrate, however, that the magnitude of possible biospheric influences on the carbon balance requires that this factor is taken into account for future scenarios of atmospheric CO2 and climate change.  相似文献   

15.
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche‐based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1‐WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.  相似文献   

16.
Fire is an important environmental disturbance in Mediterranean‐climate regions; however, its intensity and frequency are predicted to increase under climate change scenarios with unknown implications for ecosystems in these regions. Temporary wetlands, with their periodic wet and dry phases, are considered one of the most productive systems in the world and their invertebrate communities form a crucial diet component for higher trophic levels. The effect of fire on the hatching success of invertebrate propagules from temporary wetlands in the Cape Flats Sand Fynbos (Cape Town, South Africa) was investigated. Homogenised soil samples from these wetlands were either experimentally subjected to vegetation fires (treatment samples) or were left as is (control samples). The results revealed that fire had a significant negative impact on invertebrate hatching success, as revealed by analyses of the different diversity measures (e.g. taxon richness, Shannon diversity and Pielou's evenness) and community composition. Proper management of fire, especially in the Mediterranean‐climate regions, which replicates the natural fire intervals typical of the area (10–15 years) and avoids unregulated or accidental fires, is essential to ensuring future protection of these critical biodiversity hotspots created by the temporary wetlands.  相似文献   

17.
Conifer forests of the western US are historically well adapted to wildfires, but current warming is creating novel disturbance regimes that may fundamentally change future forest dynamics. Stand‐replacing fires can catalyze forest reorganization by providing periodic opportunities for establishment of new tree cohorts that set the stage for stand development for centuries to come. Extensive research on modern and past fires in the Northern Rockies reveals how variations in climate and fire have led to large changes in forest distribution and composition. Unclear, however, is the importance of individual fire episodes in catalyzing change. We used high‐resolution paleoecologic and paleoclimatic data from Crevice Lake (Yellowstone National Park, Wyoming, USA), to explore the role of fire in driving low‐elevation forest dynamics over the last 2820 yr. We addressed two questions: 1) did low‐elevation forests at Crevice Lake experience abrupt community‐level vegetation changes in response to past fire events? 2) Did the interaction of short‐term disturbance events (fire) and long‐term climate change catalyze past shifts in forest composition? Over the last 2820 yr, we found no evidence for abrupt community‐level vegetation transitions at Crevice Lake, and no evidence that an interaction of climate and fire produced changes in the relative abundance of dominant plant taxa. In part, this result reflects limitations of the datasets to detect past event‐specific responses and their causes. Nonetheless, the relative stability of the vegetation to fires over the last 2820 yr provides a local baseline for assessing current and future ecological change. Observations of climate–fire–vegetation dynamics in recent decades suggest that this multi‐millennial‐scale baseline may soon be exceeded.  相似文献   

18.
Non‐native, invasive grasses have been linked to altered grass‐fire cycles worldwide. Although a few studies have quantified resulting changes in fire activity at local scales, and many have speculated about larger scales, regional alterations to fire regimes remain poorly documented. We assessed the influence of large‐scale Bromus tectorum (hereafter cheatgrass) invasion on fire size, duration, spread rate, and interannual variability in comparison to other prominent land cover classes across the Great Basin, USA. We compared regional land cover maps to burned area measured using the Moderate Resolution Imaging Spectroradiometer (MODIS) for 2000–2009 and to fire extents recorded by the USGS registry of fires from 1980 to 2009. Cheatgrass dominates at least 6% of the central Great Basin (650 000 km2). MODIS records show that 13% of these cheatgrass‐dominated lands burned, resulting in a fire return interval of 78 years for any given location within cheatgrass. This proportion was more than double the amount burned across all other vegetation types (range: 0.5–6% burned). During the 1990s, this difference was even more extreme, with cheatgrass burning nearly four times more frequently than any native vegetation type (16% of cheatgrass burned compared to 1–5% of native vegetation). Cheatgrass was also disproportionately represented in the largest fires, comprising 24% of the land area of the 50 largest fires recorded by MODIS during the 2000s. Furthermore, multi‐date fires that burned across multiple vegetation types were significantly more likely to have started in cheatgrass. Finally, cheatgrass fires showed a strong interannual response to wet years, a trend only weakly observed in native vegetation types. These results demonstrate that cheatgrass invasion has substantially altered the regional fire regime. Although this result has been suspected by managers for decades, this study is the first to document recent cheatgrass‐driven fire regimes at a regional scale.  相似文献   

19.
Aim Feedbacks between climate warming and fire have the potential to alter Arctic and sub‐Arctic vegetation. In this paper we assess the effects and interactions of temperature and wildfire on plant communities across the transition between the Arctic and sub‐Arctic. Location Mackenzie Delta region, Northwest Territories, Canada. Methods We sampled air temperatures, green alder (Alnus viridis ssp. fruticosa) cover, growth, reproduction and age distributions, and overall plant community composition on burned and unburned sites across a latitudinal gradient. Results Mean summer temperature across the study area decreased by 3 °C per degree of increasing latitude (6 °C across the study area). In the northern part of the study area, where seed viability was low, alder was less dominant than at southern sites where seed viability was high. The age structure of alder populations across the temperature gradient was highly variable, except in the northern part of the forest–tundra transition, where populations were dominated by young individuals. Alder growth and reproduction were significantly greater on burned sites (38–51 years following fire) than on unburned sites. North to south across the temperature gradient, vegetation changed from a community dominated by dwarf shrubs and fruticose lichens to one characterized by black spruce (Picea mariana), alder and willows (Salix spp.). Regardless of the position along the temperature gradient, burned sites were dominated by tall shrubs. Main conclusions Temperature limitation of alder abundance and repro‐duction, combined with evidence of recent recruitment on unburned sites, indicates that alder is likely to respond to increased temperature. Elevated alder growth and reproduction on burned sites shows that wildfire also has an important influence on alder population dynamics. The magnitude of alder’s response to fire, combined with observations that burns at the southern margin of the low Arctic are shrub dominated, suggest that increases in the frequency of wildfire have the potential to alter northern vegetation on decadal scales. By creating new seedbeds, fire provides opportunities for colonization that may facilitate the northward movement of tall shrubs. Feedbacks between the global climate system and low Arctic vegetation make understanding the long‐term impact of increasing fire frequency critical to predicting the response of northern ecosystems to global change.  相似文献   

20.
Increases in the atmospheric concentration of carbon dioxide and associated changes in climate may exert large impacts on plant physiology and the density of vegetation cover. These may in turn provide feedbacks on climate through a modification of surface‐atmosphere fluxes of energy and moisture. This paper uses asynchronously coupled models of global vegetation and climate to examine the responses of potential vegetation to different aspects of a doubled‐CO2 environmental change, and compares the feedbacks on near‐surface temperature arising from physiological and structural components of the vegetation response. Stomatal conductance reduces in response to the higher CO2 concentration, but rising temperatures and a redistribution of precipitation also exert significant impacts on this property as well as leading to major changes in potential vegetation structure. Overall, physiological responses act to enhance the warming near the surface, but in many areas this is offset by increases in leaf area resulting from greater precipitation and higher temperatures. Interactions with seasonal snow cover result in a positive feedback on winter warming in the boreal forest regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号