首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amazonian floodplain forests (known as várzea) are classified into high or low várzea depending on the spatial position on the plains. This topographic feature exposes the terrain over different time periods of inundation, causing a major limiting factor for tree seedling establishment. We hypothesize that, strategically, most of the seeds produced by trees in low várzea forests germinate faster and in synchrony (temporally concentrated germination), and that their seedlings tend to have cotyledons without reserve or foliaceous cotyledons (PEF). By contrast, seeds produced by high-várzea specialist trees exhibit slower and temporally scattered germination, and their seedlings tend to have reserve storage cotyledons (CHR). Generalist species may show no clear pattern or may be related to high-várzea species. To test this hypothesis, diaspores of 10 tree species were collected: five of low-várzea specialist trees, three of high-várzea specialist trees and two of generalist species. Seedling emergence and morphology were monitored daily in a nursery for a period of 150 days of being subjected to non-flooded (sown directly in várzea soil) and flooded conditions (15 days in water before sowing in the same soil). The seedling emergence of low-várzea species showed an increase of 37% in germinability whereas high-várzea and generalist species exhibited a decrease of 38% and 35% of germinability, respectively. Foliaceous cotyledons were preferentially found in seedlings of low-várzea species, and storage cotyledons were more common in those of high-várzea species, indicating how cotyledon morphology may determine the amount and use of resources available to a seedling during the first stages of establishment and growth. Conservation plans aiming for the maintenance of ecosystem services must consider these strategies.  相似文献   

2.
To test the hypotheses that butterflies in an intact lowland rainforest are randomly distributed in space and time, a guild of nymphalid butterflies was sampled at monthly intervals for one year by trapping 883 individuals of 91 species in the canopy and understory of four contiguous, intact forest plots and one naturally occurring lake edge. The overall species abundance distribution was well described by a log-normal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (l-β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness were lower in the canopy man in the understory, but rarefaction analysis suggested that the underlying species richness was similar in both canopy and understory. Observed species richness varied among four contiguous forest plots, and was lowest in the lake edge plot. Rarefaction and species accumulation curves showed that one forest plot and the lake edge had significantly lower species richness than other forest plots. Within any given month, only a small fraction of total sample species richness was represented by a single plot and height (canopy or understory). Comparison of this study to a similar one done in disturbed forest showed diat butterfly diversity at a naturally occurring lake edge differed strongly from a pasture-forest edge. Further comparison showed that species abundance distributions from intact and disturbed forest areas had variances that differed significandy, suggesting mat in addition to extrapolation, rarefaction and species accumulation techniques, the shapes of species abundance distributions are fundamental to assessing diversity among sites. This study shows the necessity for long-term sampling of diverse communities in space and time to assess tropical insect diversity among different areas, and the need of such studies is discussed in relation to tropical ecology and quick surveys in conservation biology.  相似文献   

3.
4.
To test the hypotheses that fruit-feeding nymphalid butterflies are randomly distributed in space and time, a community of fruit-feeding nymphalid butterflies was sampled at monthly intervals for one year by trapping 6690 individuals of 130 species in the canopy and understory of four forest habitats: primary, higraded, secondary, and edge. The overall species abundance distribution was well described by a lognormal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (1 —β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness was lower in the canopy than in the understory. However, rarefaction analysis and species accumulation curves revealed that canopy had higher species richness than understory. Observed species richness was roughly equal in all habitats, but individual abundance was much greater in edge, largely due to a single, specialist species. Rarefaction analysis and species accumulation curves showed that edge had significantly lower species richness than all other habitats. Samples from a single habitat, height and time contained only a small fraction of the total community species richness. This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities. We discuss the importance of such studies in conservation biology.  相似文献   

5.
Anthropogenic disturbances and climate change are expected to reorganize biodiversity on multiple ecological levels from populations to ecosystems, especially in arid and semiarid regions due to environmental filtering imposed by water stress. This paper examines the individual and combined effects of chronic anthropogenic disturbance and increased aridity on the structure of fruit-feeding butterfly assemblages in a human-modified landscape of Caatinga dry forest, in the northeast of Brazil. Butterflies were recorded monthly across old-growth forest stands and their assemblages were described in terms of taxonomic and functional community-level attributes confronted to different levels of chronic disturbance and aridity. Butterfly assemblages were species-poor but had high species replacement (turnover) along both the chronic disturbance and aridity gradients. We observed a negative effect of aridity on alpha and beta diversity of butterfly assemblages. Butterfly assemblages across forest stands exposed to high levels of chronic disturbance and aridity had a nested structure. Functional diversity (Rao's Q) and the community-weighted means (CWM) of ocellus-bearing species and monocot-feeding larvae were negatively and positively affected by increased aridity and chronic disturbance, respectively. Our findings suggest that aridity and its combination with chronic disturbance have a drastic effect on the structure of butterfly assemblages in the Caatinga dry forest. These findings highlight that rainfall and chronic disturbances as major drivers of biological reorganization in human-modified landscapes. As aridity increases, Caatinga tends to support taxonomically and functionally impoverished and highly distorted assemblages. Abstract in Portuguese is available with online material  相似文献   

6.
7.
Aim The study examined qualitative predictions of ecological theories in relation to the spatial distribution of species turnover of aquatic macrophytes, through the following parameters: (1) distance between lakes (2) chemical conditions of the lakes (3) chemical differences between the lakes, and (4) the lake size. Location 562 lakes dispersed throughout Northern Ireland were analysed. Methods To obtain species turnover estimates independent of richness, the average distance between focal lakes and their five nearest neighbours in ordination space (DCA) was standardized by the species richness in a Generalized Additive Model (GAM). The relationships between species turnover and ecological (chemical condition, chemical difference, distance between lakes, and lake‐size) and geographical parameters (latitude, longitude, and altitude) were analysed using GAM. Results The results indicate that the pattern in species turnover is a combination of the chemical conditions and the distance between the lakes, including the interaction term. The effects of chemical heterogeneity and lake size parameters were both positive but weak. In general, increased distance and decreased ionic concentration contribute to increased turnover. The influence of distance on species turnover is strongest at low and high altitude, and at mid‐elevation the species turnover is mainly driven by the chemical conditions. Towards the north there is an increasing influence of distance, whereas in the south the chemical conditions have their strongest influence. Conclusions There is a need for components from several established ecological theories to explain the spatial trends in species turnover within Northern Ireland. Central theories in this particular study are the population/metapopulation dynamics, the continuum concept, and the species‐pool concept.  相似文献   

8.
Availability of adequate nutrition is among the most important factors affecting growth, development, and reproduction in animals. In holometabolous insects, diets and nutritional needs change between life stages, with larval storage, and adult feeding and reproduction being linked to one another. In several butterfly species, adult feeding is of fundamental importance to realize the full reproductive potential, primarily due to a prominent role of adult diet-derived carbohydrates. In contrast, the role of adult diet-derived amino acids is still under debate, despite the fact that butterflies were often found to preferentially feed on amino acid-rich substrates. Recently it was found that amino acids from adult income could compensate for adverse effects of larval food quality. In our study on the tropical butterfly Bicyclus anynana (Butler) (Lepidoptera: Nymphalidae), we used larval starvation to investigate corresponding effects on female reproductive output. Short periods of larval starvation prolonged development time and reduced larval survival, larval growth rate, pupal mass, and egg size. Regardless of the degree of larval starvation, access to amino acids in the adult diet increased egg size, whereas egg number remained largely unaffected. Thus, although there was some evidence for adult diet-derived amino acids being overall beneficial to reproduction, there was no indication that they can compensate for larval starvation.  相似文献   

9.
Protected forest areas of Sulawesi are gradually being replaced by intensively used agroforestry systems and farmland, especially in lowland and sub-montane regions. Studies on the impact of these man-induced changes on biodiversity are of urgent conservation concern. We compared the fruit-feeding butterfly assemblage of a natural hill forest to that of a disturbed hill forest, representing a mosaic of old secondary forest and recently abandoned or active subsistence farms. Overall, species richness seemed highest in the disturbed site, but both abundance and diversity of endemic butterflies were significantly higher in the natural forest. Although the butterfly assemblage showed a clear vertical structure in the natural forest, vertical stratification was no longer pronounced at the disturbed site. Comparative studies based on diversity estimates from ground samples should consider not only the scale at which sampling is carried out and influences from nearby habitat patches in the surrounding landscape mosaic, but also possible behavioural changes in stratified species after forest modification. This study shows that higher overall species richness does not imply higher species distinctiveness, and indicates that the contribution of land-use systems to global biodiversity should be evaluated with caution, even when relatively high species richness estimates are found.  相似文献   

10.
Surveys on tropical invertebrates must gather as much information as possible over the shortest period, mainly because of financial limitations and hyperdiversity. Fruit-feeding butterflies in the subfamilies Biblidinae, Charaxinae, Nymphalinae and Satyrinae (Nymphalidae) are attracted to decaying material and can be sampled with standardized methodologies, but (1) some groups can be difficult to collect, despite being quite common in Amazonian forest understorey; moreover, (2) the duration of the sampling period is not consistent among studies and (3) the sufficient effort for financially limited projects remains unknown. With this study, we aimed to fulfill points 1–3 in order to recommend a less costly protocol for monitoring purposes in the Amazon. In 25 km2 of rainforest in the state of Amazonas, Brazil, we evaluated the performance of sampling schemes for these butterflies (four, three, two and one visit in 250 m-long plots), using both nets and bait traps, while considering reductions in sampling effort and the removal of rare and infrequent taxa to optimize field and laboratory work. Reduced-effort schemes are only validated if they reflect both taxonomic and ecological information provided by the maximum effort. Procrustes superimposition was used to estimate the dissimilarity in the spatial distribution of species between schemes. Spatial turnover in herb, liana, palm tree and diameter-at-breast-height > 10 cm tree species composition was used as predictor for the butterfly community through linear regressions. The three-visit scheme was sufficient to retrieve high species similarity and the ecological patterns observed with maximum effort. The two-visit scheme lost a significant amount of information on species composition similarity, but recovered stronger environmental relationships than those observed with the four-visit scheme. The removal of uncommon species did not affect the ecological response of the community, thereby suggesting that common species are driving the spatial patterns of the studied butterflies. Thus, large reductions in costs by reducing sampling effort could be achieved with relatively little loss of information on the species turnover of butterflies and their relationships with the environment. The proposed sampling protocols with reduced effort will allow projects to use their time and financial supply more effectively, showing that cost-effective shortcuts for biodiversity assessments can be useful for conservation, biomonitoring and land use management.  相似文献   

11.
Extreme climatic events and anthropic disturbances affect the hydrological regime of Amazonian rivers and connected floodplain forests. This study aims to investigate the impacts of the Balbina hydroelectric power plant on the floodplain forests of the Uatumã River, in the Central Amazon. For this, tree age and diameter increment from the most abundant tree species of three different topographic levels were obtained and analyzed in the affected area downstream of the Balbina dam (Uatumã River) and compared to an undisturbed site (Abacate River, affluent) considering age structure and mean diameter increments between the topographic levels and the two systems. The occurrence of old trees is much lower at the disturbed site compared to the undisturbed system. Especially at the middle topography of the Uatumã site, we observed tree species with high mean diameter increment indicating a strong disturbance. We suggest that the disturbances may be associated with extreme hydro‐climatic events, such as extreme droughts that occurred during the El Niño years 1925/26 and 1982/83 and that these events may increase vulnerability of igapó floodplains to wildfires. Abstract in Portuguese is available with online material.  相似文献   

12.
Beta多样性通常指群落在时间和空间上物种组成的差异, 包括物种周转组分和物种丰富度差异组分。驱动beta多样性格局形成的生态过程决定了群落的时空动态, 然而关于beta多样性及其两个组分格局形成的驱动力还存在较多争议。以往研究表明, beta多样性的格局存在取样尺度的依赖性, 驱动其形成的生态过程在不同取样尺度下的相对重要性也随之改变。本研究以哀牢山亚热带中山湿性常绿阔叶林20 ha动态监测样地为研究对象, 在不同取样尺度上, 将样方间的Bray-Curtis指数分解为物种周转组分和物种丰富度差异组分, 通过典范冗余分析和方差分解的方法揭示环境过滤和扩散限制对于beta多样性及其两个组分格局形成的相对重要性及其尺度依赖性。结果表明: (1) beta多样性、物种周转组分和物种丰富度差异组分均随取样尺度的增大而减小。在不同取样尺度下, 物种周转组分对于beta多样性的贡献始终占主导地位。(2)随着取样尺度的增大, 环境过滤驱动beta多样性格局形成的相对重要性逐渐增加, 而扩散限制的相对重要性逐渐降低。本研究进一步证实了取样尺度在beta多样性格局形成及其驱动力定量评价中的重要性, 今后的研究需要进一步解析上述尺度效应的形成机制。  相似文献   

13.

Question

Temperate grasslands are known for their high plant diversity and distinct seasonality. However, their intra-annual community dynamics are still largely overlooked by ecologists. Therefore, we explored the seasonal alpha- and beta-diversity patterns of vascular plants and their relationships to above-ground biomass in a rocky steppe (Festucion valesiacae).

Location

Pavlov Hills, SE Czech Republic.

Methods

For one year, we monitored the plant community of the rocky steppe at monthly intervals in 42 permanent plots of 0.25 m2. We examined seasonal changes in above-ground biomass (estimated from the cover and height of living plant parts) and seasonal beta-diversity, which we partitioned into turnover and nestedness components and their quantitative counterparts: balanced changes and abundance gradients.

Results

We identified a pronounced seasonal pattern of above-ground biomass, species richness and composition. Total above-ground biomass was highest in June (summer), with a peak representing only 60% of total annual production (sum of individual species' maxima). However, the observed peak in species richness occurred in March (early spring), with 80% of the total species number recorded throughout the year. Accordingly, nestedness and abundance gradient patterns differed in the spring months, while seasonal turnover and balanced changes in abundance were generally congruent. Annual, short-lived, and perennial species exhibited different seasonal patterns of species richness and biomass production, although a sharp increase in biomass and a peak in species richness in spring were universal across the community.

Conclusions

Seasonal climatic constraints on plant growth are key determinants of primary production dynamics. Plants adapt to these constraints by adjusting their life cycles in different ways. In dry grasslands, the complexity of plant responses to climatic seasonality can result in seasonal beta-diversity patterns with divergent peaks in biomass and species richness.  相似文献   

14.
1. Large river floodplains are considered key nursery habitats for many species of riverine fish. The lower Volga River floodplains (Russian Federation) are still relatively undisturbed, serving as a suitable model for studying the influence of flooding and temperature on fish recruitment in floodplain rivers. 2. We examined the interannual variability in recruitment success of young‐of‐the‐year (YOY) fish in the lower Volga floodplain in relation to flood pulse characteristics and rising water temperatures in the spring. We sampled four areas with different flooding regimes, in three consecutive years (2006–2008). 3. Extensive areas with a long duration of flooding accommodated high densities of young fish. This suggests that extended inundation improves the recruitment success of river fish. In areas with extensive flooding, the biomass of YOY of most fish species was about three times higher in 2006 and 2007 than in 2008. We hypothesise that low spring temperatures in 2008 may have caused this reduced recruitment and that a flood synchronised with rising temperature enhances recruitment success. 4. Extensive flooding was particularly favourable for species characterised by large body size, delayed maturation, high fecundity and low parental investment, such as pike Esox lucius, roach Rutilus rutilus and ide Leuciscus idus. Gibel carp Carassius gibelio, a species tolerant of high temperature and hypoxia, did particularly well in small waterbodies in the driest parts of the floodplain. 5. Structural characteristics of floodplain waterbodies explained much of YOY fish density. These species–environment associations varied from year to year, but some species such as common bream Abramis brama, roach and gibel carp showed consistent relationships with structural habitat characteristics in all years, despite large interannual fluctuations in flood pulse and spring temperature.  相似文献   

15.
Rivers in central Amazonia experience annual water-level fluctuations of up to 14m, flooding vast areas of adjacent forest for periods ranging from a few to 270 days per year. At different sites, variation in the duration and type of flooding results in a mosaic of habitats that includes lakes, grasslands, forests, and streams. To study the effects of flood duration on plant species richness and floristic composition, two river margin sites were surveyed on the rivers Jaú and Tarumã-Mirim. Both areas are seasonally flooded by blackwaters, and plots were made at different topographic levels (lower, middle and upper slopes). All woody plants with DBH>5cm were inventoried in five 10 × 40m plots in each of the three topographic levels, which varied in length of flood duration and mean water level. Plant species richness did not vary significantly between topographic levels, but species composition varied substantially. At both study sites, the species composition exhibited distinctive distribution patterns with respect to the three topographic levels and river site. Differences in the distribution of dominant species in both sites probably relate to the ability of species to withstand seasonal flooding, although other edaphic factors associated with the topographic levels may also be important, especially for less-dominant, locally rare, and habitat generalist species. Species composition overlap among topographic levels at the two sites was highly variable ranging from 15% to 43%. Knowledge about the complex pattern of species composition and distributions between and among topographic levels and river sites is important for the preservation of the diverse flora of the blackwater forests and for the creation of future conservation management plans and design of protected areas in this ecosystem that will maintain the biodiversity.  相似文献   

16.
17.
To quantify and assess the processes underlying community assembly and driving tree species abundance distributions(SADs) with spatial scale variation in two typical subtropical secondary forests in Dashanchong state‐owned forest farm, two 1‐ha permanent study plots (100‐m × 100‐m) were established. We selected four diversity indices including species richness, Shannon–Wiener, Simpson and Pielou, and relative importance values to quantify community assembly and biodiversity. Empirical cumulative distribution and species accumulation curves were utilized to describe the SADs of two forests communities trees. Three types of models, including statistic model (lognormal and logseries model), niche model (broken‐stick, niche preemption, and Zipf‐Mandelbrodt model), and neutral theory model, were estimated by the fitted SADs. Simulation effects were tested by Akaike's information criterion (AIC) and Kolmogorov–Smirnov test. Results found that the Fagaceae and Anacardiaceae families were their respective dominance family in the evergreen broad‐leaved and deciduous mixed communities. According to original data and random sampling predictions, the SADs were hump‐shaped for intermediate abundance classes, peaking between 8 and 32 in the evergreen broad‐leaved community, but this maximum increased with size of total sampled area size in the deciduous mixed community. All niche models could only explain SADs patterns at smaller spatial scales. However, both the neutral theory and purely statistical models were suitable for explaining the SADs for secondary forest communities when the sampling plot exceeded 40 m. The results showed the SADs indicated a clear directional trend toward convergence and similar predominating ecological processes in two typical subtropical secondary forests. The neutral process gradually replaced the niche process in importance and become the main mechanism for determining SADs of forest trees as the sampling scale expanded. Thus, we can preliminarily conclude that neutral processes had a major effect on biodiversity patterns in these two subtropical secondary forests but exclude possible contributions of other processes.  相似文献   

18.
19.
Assembly of ecological communities is important for the conservation of ecosystems, predicting perturbation impacts, and understanding the origin and loss of biodiversity. We tested how amphibian communities are assembled by neutral and niche‐based mechanisms, such as habitat filtering. Species richness, β‐diversities, and reproductive traits of amphibians were evaluated at local scale in seven habitats at different elevation and disturbance levels in Wisui Biological Station, Morona‐Santiago, Ecuador, on the foothills of the Cordillera del Kutukú; and at regional scale using 109 localities across evergreen forests of Amazonia and its Andean slopes (0–3,900 m a.s.l.). At local scale, species composition showed strong differences among habitats, explained mainly by turnover. Reproductive modes occurred differently across habitats (e.g., prevalence of direct developers at high elevation, where breeding in ground level water disappears). At regional scale, elevation was the most important factor explaining the changes in species richness, reproductive trait occurrences, and biotic dissimilarities. Species number in all groups decreased with elevation except for those with lotic tadpoles and terrestrial reproduction stages. Seasonality, annual precipitation, and relative humidity partially explained the occurrence of some reproductive traits. Biotic dissimilarities were also mostly caused by turnover rather than nestedness and were particularly high in montane and foothill sites. Within lowlands, geographic distance explained more variability than elevation. Habitat filtering was supported by the different occurrence of reproductive traits according to elevation, water availability, and breeding microhabitats at both scales, as well as other assembly mechanisms based in biotic interactions at local scale. Human‐generated land use changes in Amazonia and its Andean slopes reduce local amphibian biodiversity by alteration of primary forests and loss of their microhabitats and the interaction network that maintains their unique amphibian assemblages with different reproductive strategies.  相似文献   

20.
Recent studies have reported a consistent pattern of strong dominance of a small subset of tree species in neotropical forests. These species have been called “hyperdominant” at large geographical scales and “oligarchs” at regional‐landscape scales when being abundant and frequent. Forest community assembly is shaped by environmental factors and stochastic processes, but so far the contribution of oligarchic species to the variation of community composition (i.e., beta diversity) remains poorly known. To that end, we established 20.1‐ha plots, that is, five sites with four forest types (ridge, slope and ravine primary forest, and secondary forest) per site, in humid lowland tropical forests of southwestern Costa Rica to (a) investigate how community composition responds to differences in topography, successional stage, and distance among plots for different groups of species (all, oligarch, common and rare/very rare species) and (b) identify oligarch species characterizing changes in community composition among forest types. From a total of 485 species of trees, lianas and palms recorded in this study only 27 species (i.e., 6%) were nominated as oligarch species. Oligarch species accounted for 37% of all recorded individuals and were present in at least half of the plots. Plant community composition significantly differed among forest types, thus contributing to beta diversity at the landscape scale. Oligarch species was the component best explained by geographical and topographic variables, allowing a confident characterization of the beta diversity among tropical lowland forest stands. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号