首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu  Jie  Zhang  Weijin  Liu  Xiaohui  Wu  Lili  He  Guangting  Li  Peixin  Guo  Xiaohua  Chen  Zhongqing  Huang  Qiaobing 《Molecular and cellular biochemistry》2018,449(1-2):257-265
Molecular and Cellular Biochemistry - Endoplasmic reticulum (ER) stress-induced endothelial cell (EC) apoptosis has been implicated in a variety of human diseases. In addition to being regarded as...  相似文献   

2.
Wang  Ning  Gao  Qing  Shi  Jie  Yulan  Chen  Ji  Weimeng  Sheng  Xiumei  Zhang  Rui 《Molecular biology reports》2022,49(9):8727-8740
Molecular Biology Reports - During the pathogenesis and progression of diabetes, lipotoxicity is a major threat to the function and survival of pancreatic β-cells. To battle against the...  相似文献   

3.
4.
5.
ω-Hydroxyundec-9-enoic acid (ω-HUA), a hydroxyl unsaturated fatty acid derivative, is involved in the antifungal activity of wild rice (Oryza officinalis). Here, we investigated the anti-cancer activity of ω-HUA on a non-small cell lung cancer (NSCLC) cell line. ω-HUA increased apoptosis and induced cleavages of caspase-6, caspase-9, and poly (ADP-ribose) polymerase (PARP). ω-HUA treatment significantly induced endoplasmic reticulum (ER) stress response. Suppression of CHOP expression and inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly attenuated the ω-HUA treatment-induced activation of caspase-6, caspase-9, and PARP, and subsequent apoptotic cell death, indicating a role for ER stress in ω-HUA-induced apoptosis. In addition, cells subjected to ω-HUA exhibited significantly increased quantity of reactive oxygen species (ROS), and the ROS scavenger N-acetyl-l-cysteine (NAC) inhibited ω-HUA-induced apoptotic cell death and ER stress signals, indicating a role for ROS in ER stress-mediated apoptosis in ω-HUA-treated cells. Taken together, these results suggest that sequential ROS generation and ER stress activation are critical in ω-HUA treatment-induced apoptosis and that ω-HUA represents a promising candidate for NSCLC treatment.  相似文献   

6.
Selenoprotein S (SelS), a transmembrane selenoprotein, may be related to the response of endoplasmic reticulum (ER) stress. In this report, the influence of selenite supplementation and SelS gene silence on β-mercaptoethanol (β-ME)-mediated ER stress and cell apoptosis in HepG2 cells were examined. The results showed that SelS protein expression was markedly increased by 10 mM β-ME and 100 nM sodium selenite in HepG2 cells. GRP78 protein level was significantly increased after treatment with 10 mM β-ME in HepG2 cells, which suggested that β-ME was also an ER stress inducer. Meanwhile, β-ME (10 mM) was found to induce cell apoptosis, which was alleviated obviously when cells were pretreated with 100 nM selenite before exposure to β-ME. Moreover, the suppression of SelS gene by siRNA could aggravate HepG2 cell apoptosis induced by β-ME significantly. In conclusion, these results suggested that β-ME, also an ER stress agent, could induce cell apoptosis, and SelS may play an important role in protecting cells from apoptosis induced by ER stress in HepG2 cells.  相似文献   

7.
Rottlerin, a compound reported to be a PKC δ-selective inhibitor, has been shown to induce growth arrest or apoptosis of human cancer cell lines. In our study, rottlerin dose-dependently induced apoptotic cell death in colon carcinoma cells. Treatment of HT29 human colon carcinoma cells with rottlerin was found to induce a number of signature ER stress markers; phosphorylation of eukaryotic initiation factor-2α (eIF-2α), ER stress-specific XBP1 splicing, and up-regulation of glucose-regulated protein (GRP)-78 and CCAAT/enhancer-binding protein-homologous protein (CHOP). However, suppression of PKC δ expression by siRNA or overexpression of WT-PKC δ and DN-PKC δ did not abrogate the rottlerin-mediated induction of CHOP. These results suggest that rottlerin induces up-regulation of CHOP via PKC δ-independent pathway. Furthermore, down-regulation of CHOP expression using CHOP siRNA attenuated rottlerin-induced apoptosis. Taken together, the present study thus provides strong evidence to support an important role of ER stress response in mediating the rottlerin-induced apoptosis.  相似文献   

8.
Accumulation of misfolded proteins and alterations in calcium homeostasis induces endoplasmic reticulum (ER) stress, leading to apoptosis. In this study, we tested the hypothesis that β-AR stimulation induces ER stress, and induction of ER stress plays a pro-apoptotic role in cardiac myocytes. Using thapsigargin and brefeldin A, we demonstrate that ER stress induces apoptosis in adult rat ventricular myocytes (ARVMs). β-AR-stimulation (isoproterenol; 3h) significantly increased expression of ER stress proteins, such as GRP-78, Gadd-153, and Gadd-34, while activating caspase-12 in ARVMs. In most parts, these effects were mimicked by thapsigargin. β-AR stimulation for 15 min increased PERK and eIF-2α phosphorylation. PERK phosphorylation remained higher, while eIF-2α phosphorylation declined thereafter, reaching to ~50% below basal levels at 3 h after β-AR stimulation. This decline in eIF-2α phosphorylation was prevented by β1-AR, not by β2-AR antagonist. Forskolin, adenylyl cyclase activator, simulated the effects of ISO on eIF-2α phosphorylation. Salubrinal (SAL), an ER stress inhibitor, maintained eIF-2α phosphorylation and inhibited β-AR-stimulated apoptosis. Furthermore, inhibition of caspase-12 using z-ATAD inhibited β-AR-stimulated and thapsigargin-induced apoptosis. In vivo, β-AR stimulation induced ER stress in the mouse heart as evidenced by increased expression of GRP-78 and Gadd-153, activation of caspase-12, and dephosphorylation of eIF-2α. SAL maintained phosphorylation of eIF-2α, inhibited activation of caspase-12, and decreased β-AR-stimulated apoptosis in the heart. Thus, β-AR stimulation induces ER stress in cardiac myocytes and in the heart, and induction of ER stress plays a pro-apoptotic role.  相似文献   

9.
10.
We have recently shown that the crosstalk between mild endoplasmic reticulum (ER) stress and low concentrations of the pro-inflammatory cytokine interleukin (IL)-1β exacerbates beta cell inflammatory responses via the IRE1α/XBP1 pathway. We presently investigated whether mild ER stress also sensitizes beta cells to cytokine-induced apoptosis. Cyclopiazonic acid (CPA)-induced ER stress enhanced the IL-1β apoptosis in INS-1E and primary rat beta cells. This was not prevented by XBP1 knockdown (KD), indicating the dissociation between the pathways leading to inflammation and cell death. Analysis of the role of pro- and anti-apoptotic proteins in cytokine-induced apoptosis indicated a central role for the pro-apoptotic BH3 (Bcl-2 homology 3)-only protein Bim (Bcl-2-interacting mediator of cell death), which was counteracted by four anti-apoptotic Bcl-2 (B-cell lymphoma-2) proteins, namely Bcl-2, Bcl-XL, Mcl-1 and A1. CPA+IL-1β-induced beta cell apoptosis was accompanied by increased expression of Bim, particularly the most pro-apoptotic variant, small isoform of Bim (BimS), and decreased expression of A1. Bim silencing protected against CPA+IL-1β-induced apoptosis, whereas A1 KD aggravated cell death. Bim inhibition protected against cell death caused by A1 silencing under all conditions studied. In conclusion, mild ER stress predisposes beta cells to the pro-apoptotic effects of IL-1β by disrupting the balance between pro- and anti-apoptotic Bcl-2 proteins. These findings link ER stress to exacerbated apoptosis during islet inflammation and provide potential mechanistic targets for beta cell protection, namely downregulation of Bim and upregulation of A1.  相似文献   

11.
Blood-brain barrier (BBB) breakdown has been determined to play a critical role in the pathogenesis of Alzheimer's disease (AD). However, the underlying mechanisms of BBB disruption in AD remain unclear. Our previous study suggested that the receptor for advanced glycation end-products (RAGE) functioned as a signal transduction receptor in Aβ1–42-induced damage in endothelial cells. In our present study, we revealed that RAGE-mediated endoplasmic reticulum stress (ERS) is essential for Aβ-induced endothelial cell damage. Here, we found that Aβ1–42 activated ERS by upregulation of Grp78, xbp-1 and CHOP in endothelial cells and that Aβ1–42-resulted lesions, including the upregulations of caspase-12 and caspase-3, the augment of bax/bcl-2 ratio, and the downregulations of ZO-1 and Occludin in bEnd.3 cells, were ameliorated by the pretreatment of salubrinal, an ERS inhibitor. Furthermore, the expressions of Grp78, xbp-1 and CHOP induced by Aβ1–42 were blocked by transfection of RAGE small interfering RNA (siRNA), which indicated that Aβ1–42 activated ERS in a RAGE-dependent manner. Additionally, bEnd.3 cells transfected with RAGE siRNA showed lower expressions of caspase-12 and caspase-3, decreased bax/bcl-2 ratio, and higher expressions of ZO-1 and Occludin following Aβ1-42 treatment, comparing to control cells. In conclusion, our data demonstrated that Aβ1–42 induced endothelial cells damage via activation of ERS in a RAGE-dependent manner.  相似文献   

12.
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1–40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca2 + homeostasis due to the release of Ca2 + from this intracellular store. Finally, Aβ1–40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1–40 concomitantly with caspase-12 activation. Furthermore, Aβ1–40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1–40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.  相似文献   

13.
Hyperglycemia induces apoptotic cell death in a variety of cell types in diabetes, and the mechanism remains unclear. We report here that culture of rat retinal glial Müller cells in 25 mM glucose for 72 h significantly inactivated Akt and induced apoptosis. Likewise, hyperglycemia caused a significant dephosphorylation of Akt at serine-473 in Müller cells in the retina of streptozotocin-induced diabetic rats. Inactivation of Akt was associated with dephosphorylation of BAD, increased cytochrome c release, and activation of caspase-3 and caspase-9. Upregulation of Akt activity by overexpression of constitutively active Akt inhibited elevated glucose-induced apoptosis, whereas downregulation of Akt activity by overexpression of dominant negative Akt exacerbated elevated glucose-induced apoptosis, as assessed by caspase activity and nucleic acid staining. These data suggest that apoptosis induced by chronically elevated glucose is at least in part mediated by downregulation of Akt survival pathway in cultured Müller cells. It has been reported that antiapoptotic effect of Akt requires glucose in growth factor withdrawal-induced apoptosis. Our data suggest that although acutely elevated glucose may be beneficial to the cell survival, chronically elevated glucose can cause apoptosis via downregulation of Akt survival signaling.  相似文献   

14.
Heart failure accounts for substantial morbidity and mortality worldwide. Accumulating evidence suggests that aberrant cardiac cell death caused by endoplasmic reticulum stress (ERS) is often associated with structural or functional cardiac abnormalities that lead to insufficient cardiac output. The detailed molecular mechanism underlying the pathological death of cardiomyocytes still remains poorly understood. We found that 17-AAG (tanespimycin), an HSP90 (heat shock protein 90) inhibitor often used to kill cancer cells, could potently inhibit tunicamycin-induced ERS and the downstream nuclear factor kappa B activity in neonatal rat cardiomyocytes, leading to diminished apoptotic signaling and thus enhanced cell survival. Interestingly, the antiapoptotic effect of 17-AAG on cardiomyocytes required normal expression of miR-93, an oncogenic microRNA known to promote cell survival and growth. Our study implicated a new pharmacological role of 17-AAG in supporting the miR-93–associated oncogenic signaling to prevent the pathological death of cardiomyocytes. The results opened opportunities for exploring new strategies in the development of therapeutic agents.  相似文献   

15.
16.
Diabetes is associated with the death and dysfunction of insulin-producing pancreatic β-cells. In other systems, Musashi genes regulate cell fate via Notch signaling, which we recently showed regulates β-cell survival. Here we show for the first time that human and mouse adult islet cells express mRNA and protein of both Musashi isoforms, as well Numb/Notch/Hes/neurogenin-3 pathway components. Musashi expression was observed in insulin/glucagon double-positive cells during human fetal development and increased during directed differentiation of human embryonic stem cells (hESCs) to the pancreatic lineage. De-differentiation of β-cells with activin A increased Msi1 expression. Endoplasmic reticulum (ER) stress increased Msi2 and Hes1, while it decreased Ins1 and Ins2 expression, revealing a molecular link between ER stress and β-cell dedifferentiation in type 2 diabetes. These effects were independent of changes in Numb protein levels and Notch activation. Overexpression of MSI1 was sufficient to increase Hes1, stimulate proliferation, inhibit apoptosis and reduce insulin expression, whereas Msi1 knockdown had the converse effects on proliferation and insulin expression. Overexpression of MSI2 resulted in a decrease in MSI1 expression. Taken together, these results demonstrate overlapping, but distinct roles for Musashi-1 and Musashi-2 in the control of insulin expression and β-cell proliferation. Our data also suggest that Musashi is a novel link between ER stress and the compensatory β-cell proliferation and the loss of β-cell gene expression seen in specific phases of the progression to type 2 diabetes.  相似文献   

17.
Induction of endoplasmic reticulum (ER) stress and apoptosis by elevated exogenous saturated fatty acids (FAs) plays a role in the pathogenesis of β-cell dysfunction and loss of islet mass in type 2 diabetes. Regulation of monounsaturated FA (MUFA) synthesis through FA desaturases and elongases may alter the susceptibility of β-cells to saturated FA-induced ER stress and apoptosis. Herein, stearoyl-CoA desaturase (SCD)1 and SCD2 mRNA expression were shown to be induced in islets from prediabetic hyperinsulinemic Zucker diabetic fatty (ZDF) rats, whereas SCD1, SCD2, and fatty acid elongase 6 (Elovl6) mRNA levels were markedly reduced in diabetic ZDF rat islets. Knockdown of SCD in INS-1 β-cells decreased desaturation of palmitate to MUFA, lowered FA partitioning into complex neutral lipids, and increased palmitate-induced ER stress and apoptosis. Overexpression of SCD2 increased desaturation of palmitate to MUFA and attenuated palmitate-induced ER stress and apoptosis. Knockdown of Elovl6 limited palmitate elongation to stearate, increasing palmitoleate production and attenuating palmitate-induced ER stress and apoptosis, whereas overexpression of Elovl6 increased palmitate elongation to stearate and palmitate-induced ER stress and apoptosis. Overall, these data support the hypothesis that enhanced MUFA synthesis via upregulation of SCD2 activity can protect β-cells from elevated saturated FAs, as occurs in prediabetic states. Overt type 2 diabetes is associated with diminished islet expression of SCD and Elovl6, and this can disrupt desaturation of saturated FAs to MUFAs, rendering β-cells more susceptible to saturated FA-induced ER stress and apoptosis.  相似文献   

18.
Endoplasmic reticulum (ER) stress–induced apoptosis is involved in many diseases, but the mechanisms linking ER stress to apoptosis are incompletely understood. Based on roles for C/EPB homologous protein (CHOP) and ER calcium release in apoptosis, we hypothesized that apoptosis involves the activation of inositol 1,4,5-triphosphate (IP3) receptor (IP3R) via CHOP-induced ERO1-α (ER oxidase 1 α). In ER-stressed cells, ERO1-α is induced by CHOP, and small interfering RNA (siRNA) knockdown of ERO1-α suppresses apoptosis. IP3-induced calcium release (IICR) is increased during ER stress, and this response is blocked by siRNA-mediated silencing of ERO1-α or IP3R1 and by loss-of-function mutations in Ero1a or Chop. Reconstitution of ERO1-α in Chop−/− macrophages restores ER stress–induced IICR and apoptosis. In vivo, macrophages from wild-type mice but not Chop−/− mice have elevated IICR when the animals are challenged with the ER stressor tunicamycin. Macrophages from insulin-resistant ob/ob mice, another model of ER stress, also have elevated IICR. These data shed new light on how the CHOP pathway of apoptosis triggers calcium-dependent apoptosis through an ERO1-α–IP3R pathway.  相似文献   

19.
Licochalcone A (LicA), an estrogenic flavonoid, induces apoptosis in multiple types of cancer cells. In this study, the molecular mechanisms underlying the anti-cancer effects of LicA were investigated in HepG2 human hepatocellular carcinoma cells. LicA induced apoptotic cell death, activation of caspase-4, -9, and -3, and expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by CHOP knockdown or treatment with the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced LicA-induced cell death. LicA also induced reactive oxygen species (ROS) accumulation and the anti-oxidant N-acetylcysteine reduced LicA-induced cell death and CHOP expression. In addition, LicA increased the levels of cytosolic Ca2+, which was blocked by 2-aminoethoxydiphenyl borate (an antagonist of inositol 1,4,5-trisphosphate receptor) and BAPTA-AM (an intracellular Ca2+ chelator). 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited LicA-induced cell death. Interestingly, LicA induced phosphorylation of phospholipase Cγ1 (PLCγ1) and inhibition of PLCγ1 reduced cell death and ER stress. Moreover, the multi-targeted receptor tyrosine kinase inhibitors, sorafenib and sunitinib, reduced LicA-induced cell death, ER stress, and cytosolic Ca2+ and ROS accumulation. Finally, LicA induced phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and c-Met receptor and inhibition of both receptors by co-transfection with VEGFR2 and c-Met siRNAs reversed LicA-induced cell death, Ca2+ increase, and CHOP expression. Taken together, these findings suggest that induction of ER stress via a PLCγ1-, Ca2+-, and ROS-dependent pathway may be an important mechanism by which LicA induces apoptosis in HepG2 hepatocellular carcinoma cells.  相似文献   

20.
ATP can be released from neurons and act as a neuromodulator in the nervous system. Besides neurons, cortical astrocytes also are capable of releasing ATP from acidic vesicles in a Ca(2+)-dependent way. In the present work, we investigated the release of ATP from Müller glia cells of the chick embryo retina by examining quinacrine staining and by measuring the extracellular levels of ATP in purified Müller glia cultures. Our data revealed that glial cells could be labeled with quinacrine, a reaction that was prevented by incubation of the cells with 1μM bafilomycin A1 or 2μM Evans blue, potent inhibitors of vacuolar ATPases and of the vesicular nucleotide transporter, respectively. Either 50mM KCl or 1mM glutamate was able to decrease quinacrine staining of the cells, as well as to increase the levels of ATP in the extracellular medium by 77% and 89.5%, respectively, after a 5min incubation of the cells. Glutamate-induced rise in extracellular ATP could be mimicked by 100μM kainate (81.5%) but not by 100μM NMDA in medium without MgCl(2) but with 2mM glycine. However, both glutamate- and kainate-induced increase in extracellular ATP levels were blocked by 50μM of the glutamatergic antagonists DNQX and MK-801, suggesting the involvement of both NMDA and non-NMDA receptors. Extracellular ATP accumulation induced by glutamate was also blocked by incubation of the cells with 30μM BAPTA-AM or 1μM bafilomycin A1. These results suggest that glutamate, through activation of both NMDA and non-NMDA receptors, induces the release of ATP from retinal Müller cells through a calcium-dependent exocytotic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号