首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of the neuromuscular diseases induce changes in muscle fibre characteristics. For example, Duchenne dystrophy is characterized by a specific loss of fast fibres, and an increase in small diameter fibres. These morphological changes may lead to large modifications in the distribution of fibre diameters, possibly producing bimodal distributions. It has already been shown that it is possible to reveal these morphological modifications through the distribution of muscle fibre conduction velocity (MFCV) as estimated from needle electromyography (EMG) recordings. In this paper, we investigate whether such changes can be extracted from surface EMG signals.

Simulation allows generation of surface EMG signals in which features are well described especially at a morphological level. Therefore, we generated a database of simulated signals both in voluntary and electrically elicited contraction conditions using a bimodal distribution of muscle fibre diameters. MFCV distributions were computed using two short-term methods based on cross-correlation and peak-to-peak techniques for voluntary contraction signals, and using a deconvolution method in time domain for electrically elicited signals. MFCV distributions were compared with true ones, as generated from modelling.

This work reveals that estimating MFCV distribution through these methods does not appear yet as precise and robust enough to accurately characterize changes in redistribution of various muscle fibre diameters. However, it opens to new experimental protocols that can be explored in order to improve the robustness of MFCV distribution estimation for the follow-up of patients suffering from neuromuscular disorders.  相似文献   


2.
The relationship between muscle fibre conduction velocity (MFCV) and the power spectrum of surface EMGs in 3 human volunteers was studied during isometric contractions at 40% maximum voluntary contraction. In addition, the recovery of these two parameters was measured during short lasting contractions at the same force level every 30 s. The recovery phase was also studied during ischaemia, thereby preventing the recovery of MFCV. The mean MFCV was calculated by the cross-correlation method. The measurements were facilitated by a real-time estimation of the cross-correlation and the MFCV and by a graphic display of the digitised signal. During contraction a nearly linear relation was found between MFCV and the median frequency of the power spectrum (MPF). During recovery this relationship was lost in one subject: MPF restored much faster then MFCV. During recovery under ischemia MFCV did not recover, but MPF recovered partially in all subjects. It is concluded that the shift of the power spectrum to lower frequencies during fatigue cannot be explained by changes in MFCV alone. Central mechanisms also influence the power spectrum and studying the recovery of local muscle fatigue during ischemia may separate these influences from that of MFCV on the power spectrum during fatigue.  相似文献   

3.
The aim of the present study was to assess the time course and the origin of adaptations in neuromuscular function as a consequence of prolonged bed rest with or without countermeasure. Twenty healthy males volunteered to participate in the present study and were randomly assigned to either an inactive control group (Ctrl) or to a resistive vibration exercise (RVE) group. Prior to, and seven times during bed rest, we recorded high-density surface electromyogram (sEMG) signals from the vastus lateralis muscle during isometric knee extension exercise at a range of contraction intensities (5–100% of maximal voluntary isometric torque). The high-density sEMG signals were analyzed for amplitude (root mean square, RMS), frequency content (median frequency, Fmed) and muscle fiber conduction velocity (MFCV) in an attempt to describe bed rest-induced changes in neural activation properties at the levels of the motor control and muscle fibers. Without countermeasures, bed rest resulted in a significant progressive decline in maximal isometric knee extension strength, whereas RMS remained unaltered throughout the bed rest period. In line with observed muscle atrophy, both Fmed and MFCV declined during bed rest. RVE training during bed rest resulted in maintained maximal isometric knee extension strength, and a strong increase (~30%) in maximal EMG amplitude, from 10 days of bed rest on. Exclusion of other factors led to the conclusion that the RVE training increased motor unit firing rates as a consequence of an increased excitability of motor neurons. An increased firing rate might have been essential under training sessions, but it did not affect isometric voluntary torque capacity.  相似文献   

4.
The aim of this study was to provide direct in vivo information of the physiological and structural characteristics of active muscle fibres from a large part of the upper trapezius muscle. Two-dimensional (2-D) multi-channel surface electromyography recordings were used, with 13 × 10 electrodes covering 6 × 4.5 cm of the skin’s surface. A previously developed method was applied to detect individual propagating motor unit action potentials and to estimate their corresponding muscle fibre conduction velocity (MFCV) and muscle fibre orientation (MFO). Using these estimates, spatial distributions of MFCV and MFO were examined for five male subjects performing isometric shoulder elevation at different force levels. The main results were: (1) the general relationship between MFCV and force generation was non-systematic, with a positive relationship at the inferior part of the muscle, (2) the spatial distribution of MFCV at different force levels and fatigue was inhomogeneous and (3) the MFO was slightly different (6°) of the muscle fibres with origin superior compared to inferior to the C7 vertebra. These findings provide new information of the MFO of contracting muscle fibres and knowledge of the physiological characteristics of a large part of the upper trapezius muscle that previously was based on observations from human cadavers only.  相似文献   

5.
Changes in the median frequency of the power spectrum of the surface electromyogram (EMG) are commonly used to detect muscle fatigue. Previous research has indicated that changes in the median frequency are related to decreases in muscle fibre conduction velocity (MFCV) during sustained fatiguing contractions. However, in experimental studies the median frequency has been consistently observed to decrease by a relatively greater amount than MFCV. In this paper, a new estimate of EMG frequency compression, the Spectral Compression Estimate (SCE), is compared with the median frequency of the EMG power spectrum, the median frequency of the EMG amplitude spectrum and MFCV measured during sustained, isometric, fatiguing contractions of the brachioradialis muscle at 30, 50 and 80% maximum voluntary contraction (MVC). The SCE is found to provide a better estimate of the observed changes in MFCV than the median frequency of either the EMG power spectrum or EMG amplitude spectrum.  相似文献   

6.

Objectives:

To examine the relationship between the biceps brachii muscle innervation zone (IZ) width and the mean muscle fiber conduction velocity (MFCV) during a sustained isometric contraction.

Methods:

Fifteen healthy men performed a sustained isometric elbow flexion exercise at their 60% maximal voluntary contraction (MVC) until they could not maintain the target force. Mean MFCV was estimated through multichannel surface electromyographic recordings from a linear electrode array. Before exercise, IZ width was quantified. Separate non-parametric one-way analyses of variance (ANOVAs) were used to examine whether there was a difference in each mean MFCV variable among groups with different IZ width. In addition, separate bivariate correlations were also performed to examine the relationships between the IZ width and the mean MFCV variables during the fatiguing exercise.

Results:

There was a significant difference in the percent decline of mean MFCV (%ΔMFCV) among groups with different IZ width (χ2 (3)=11.571, p=0.009). In addition, there was also a significant positive relationship between the IZ width and the %ΔMFCV (Kendall’s tau= 0.807; p<0.001).

Conclusions:

We believe that such relationship is likely influenced by both muscle fiber size and the muscle fiber type composition.  相似文献   

7.
Alterations in scapular muscle activity, including excess activation of the upper trapezius (UT) and onset latencies of the lower trapezius (LT) and serratus anterior (SA) muscles, are associated with abnormal scapular motion and shoulder impingement. Limited information exists on the reliability of neuromuscular activity to demonstrate the efficacy of interventions. The purpose of this study was to characterize the reproducibility of scapular muscle activity (mean activity, relative onset timing) over time and establish the minimal detectable change (MDC). Surface electromyography (sEMG) of the UT, LT, SA and anterior deltoid (AD) muscles in 16 adults were captured during an overhead lifting task in two sessions, one-week apart. sEMG data were also normalized to maximum isometric contraction and the relative onset and mean muscle activity during concentric and eccentric phases of the scapular muscles were calculated. Additionally, reliability of the absolute sEMG data during the lifting task and MVIC was evaluated. Both intrasession and intersession reliability of normalized and absolute mean scapular muscle activity, assessed with intraclass correlation coefficients (ICC), ranged from 0.62 to 0.99; MDC values were between 1.3% and 11.7% MVIC and 24 to 135 mV absolute sEMG. Reliability of sEMG during MVIC was ICC = 0.82–0.99, with the exception of intersession upper trapezius reliability (ICC = 0.36). Within session reliability of muscle onset times was ICC = 0.88–0.97, but between session reliability was lower with ICC = 0.43–0.73; MDC were between 39 and 237 ms. Small changes in scapular neuromuscular mean activity (>11.7% MVIC) can be interpreted as meaningful change, while change in muscle onset timing in light of specific processing parameters used in this study is more variable.  相似文献   

8.
Integrated electromyography (iEMG) of the m. vastus lateralis was analysed during cycle ergometry in male subjects (n = 8). Two work trials were conducted, one under normoxia (N), the other under environmental normobaric hypoxia (EH in which the oxygen fraction in inspired gas = 0.116), each trial lasting 10 min. The absolute power output (180 W) was the same for both trials and was equivalent to 77 (4)% of maximum heart rate in trial N. Maximal voluntary isometric contractions were performed after each trial to assess changes in force, muscle fibre conduction velocity (MFCV), electromechanical delay (EMD), median frequency of EMG (MF) and maximal iEMG (iEMGmax). Biopy samples of muscle were obtained from the m. vastus medialis before testing. Myosin heavy chain (MHC) differences were determined through sodium dodecyl-polyacrylamide gel electrophoresis followed by densitometric analysis. No differences in submaximal iEMG were observed between EH and N trials during the first minute of work. At the end of both work trials iEMG was significantly elevated compared with starting values, however the iEMG recorded in EH exceeded N values by 15%. At the end of the EH trials the following were observed: a decrease in isometric force, MFCV and MF with an increase in EMD and the iEMGmax/force ratio. The iEMGmax was unchanged. No differences in any of these variables were observed after the N trial. Mean (SD) lactate concentrations following EH and N trials were 9.2 (4.4) mmol · 1−1 and 3.5 (1.1) mmol · 1−1, respectively. Results indicate that an increased motor unit recruitment and rate coding was needed in EH to maintain the required power output. The increased motor unit recruitment and rate coding were associated with myoelectric evidence of “peripheral” muscle fatigue. Subjects with higher compositions of type II MHC accumulated more lactate and displayed greater reductions in MF and MFCV during fatigue. Accepted: 16 June 1996  相似文献   

9.
We investigated the effect of ageing and training on muscle fibre conduction velocity (MFCV) and cardiorespiratory response during incremental cycling exercise. Eight young (YT; 24 ± 5 yrs) and eight older (OT; 64 ± 3 yrs) cyclists, together with eight young (YU; 27 ± 4 yrs) and eight older (OU; 63 ± 2 yrs) untrained individuals underwent to an incremental maximal test on a cycle ergometer. Ventilatory threshold (VT), respiratory compensation point (RCP) and maximal oxygen uptake (VO2max) were identified and MFCV recorded from the vastus lateralis muscle using surface electromyography with linear arrays electrodes.In YT MFCV increased with the exercise intensity, reaching a peak of 4.99 ± 1.02 [m/s] at VT. Thereafter, and up to VO2max, MFCV declined. In YU MFCV showed a similar trend although the peak [4.55 ± 0.53 m/s] was observed, at 75% of VO2max an intensity higher than VT (66% of VO2max). In both YT and YU MFCV did not decline until RPC, which occurred at 78% VO2max in YU and at 92% VO2max (P < 0.01) in YT. Differently from young individuals, MFCV in older subjects did not increase with exercise intensity. Moreover, maximal MFCV in OU was significantly lower [3.53 ± 0.40 m/s;] than that of YT (P < 0.005) and YU (P < 0.05).The present study shows that, especially in young individuals, MFCV reflects cardiorespiratory response during incremental dynamic cyclic exercise and hence can be used to investigate motor unit recruitment strategies.  相似文献   

10.
Jakobi, J. M., and E. Cafarelli. Neuromuscular driveand force production are not altered during bilateral contractions. J. Appl. Physiol. 84(1): 200-206, 1998.Several investigators have studied the deficit in maximalvoluntary force that is said to occur when bilateral muscle groupscontract simultaneously. A true bilateral deficit (BLD) would suggest asignificant limitation of neuromuscular control; however, some of thedata from studies in the literature are equivocal. Our purpose was todetermine whether there is a BLD in the knee extensors of untrainedyoung male subjects during isometric contractions and whether thisdeficit is associated with a decreased activation of the quadriceps,increased activation of the antagonist muscle, or an alteration inmotor unit firing rates. Twenty subjects performed unilateral (UL) and bilateral (BL) isometric knee extensions at 25, 50, 75, and 100% maximal voluntary contraction. Total UL and BL force (3%) and maximal rate of force generation (2.5%) were not significantly different. Total UL and BL maximal vastus lateralis electromyographic activity (EMG; 2.7 ± 0.28 vs. 2.6 ± 0.24 mV) andcoactivation (0.17 ± 0.02 vs. 0.20 ± 0.02 mV) were also notdifferent. Similarly, the ratio of force to EMG during submaximal ULand BL contractions was not different. Analysis of force production byeach leg in UL and BL conditions showed no differences in force, rateof force generation, EMG, motor unit firing rates, and coactivation.Finally, assessment of quadriceps activity with the twitchinterpolation technique indicated no differences in the degree ofvoluntary muscle activation (UL: 93.6 ± 2.51 Hz, BL: 90.1 ± 2.43 Hz). These results provide no evidence of a significant limitationin neuromuscular control between BL and UL isometric contractions ofthe knee extensor muscles in young male subjects.

  相似文献   

11.
Muscle fiber conduction velocity (MFCV) gives critical information on neuromuscular control and can be considered a size principle parameter, being suggestive of motor unit recruitment strategies. MFCV has been recently measured during constant-load sub-maximal cycling exercise and was found to correlate positively with percentage of type I myosin heavy chain.The aim of this study was to test the hypothesis that MFCV measured during an incremental cycling test using surface electromyography (sEMG), can be sensitive to the different metabolic requests elicited by the exercise. In particular, the relationship between ventilatory threshold (T-vent), VO2max and MFCV was explored.Eleven male physically active subjects (age 30 ± 9 years) undertook a 1-min incremental cycling test to exhaustion. T-vent and VO2max were measured using an open circuit breath by breath gas analyzer. The sEMG was recorded from the vastus lateralis muscle with an adhesive 4-electrodes array, and the MFCV was computed on each sEMG burst over the last 30-s of each step.The mean VO2max obtained during the maximal test was 53.32 ± 2.33 ml kg?1 min?1, and the T-vent was reached at 80.77 ± 3.49% of VO2max. In all subjects reliable measures of MFCV were obtained at every exercise intensity (cross correlation values >0.8). MFCV increased linearly with the mechanical load, reaching a maximum value of 4.28 ± 0.67 m s?1 at an intensity corresponding to the T-vent. Thereafter, MFCV declined until maximal work intensities. This study demonstrates that MFCV can be used as non-invasive tool to infer MUs recruitment/derecruitment strategies even during dynamic exercise from low to maximal intensities.  相似文献   

12.
Two series of experiments were performed to examine the relationship between force and change in average muscle fibre conduction velocity (MFCV) during local muscle fatigue. The average MFCV was estimated using the cross-correlation method. In the first experiment this relationship was studied with surface EMG of vastus lateralis at force levels from 10 to 100% of maximal voluntary contraction (MVC) with and without occluded circulation. The product of relative force and time was held constant. At 10-20% MVC, MFCV increased slightly under the 2 conditions. Between 30-40% MVC, MFCV decreased, this decline in conduction velocity being significantly greater with occluded circulation. Above 40% MVC the decline in MFCV was larger at higher forces, but without any differences between the ischaemic and non-ischaemic conditions. In the second experiment the relationship between change in force and MFCV was studied during sustained maximal voluntary contractions of biceps brachii. MFCV declined during the first 26-39 s of the contraction, followed by an increase. Since this increase occurred when the force had dropped to 30-50% of the initial maximal force, a partial restoration of blood flow is thought to be responsible for this phenomenon. Because an increase in MFCV was noted, despite a further decline in force, this implies that at high force levels the change in MFCV during fatigue could partly be caused by mechanisms different from those accounting for the force loss. It is concluded that above 40% MVC intramuscular pressure is sufficiently high to cause ischaemia, and MFCV is found to be very sensitive to changes in intramuscular blood flow.  相似文献   

13.
The purpose of this study was to comprehensively evaluate the reliability of a large number of commonly utilized experimental tests of in vivo human neuromuscular function separated by 4-weeks. Numerous electrophysiological parameters (i.e., voluntary and evoked electromyogram [EMG] signals), contractile properties (i.e., evoked forces and rates of force development and relaxation), muscle morphology (i.e., MRI-derived cross-sectional area [CSA]) and performance tasks (i.e., steadiness and time to task failure) were assessed from the plantarflexor muscle group in 17 subjects before and following 4-weeks where they maintained their normal lifestyle. The reliability of the measured variables had wide-ranging levels of consistency, with coefficient of variations (CV) ranging from approximately 2% to 20%, and intraclass correlation coefficients (ICC) between 0.53 and 0.99. Overall, we observed moderate to high-levels of reliability in the vast majority of the variables we assessed (24 out of the 29 had ICC>0.70 and CV<15%). The variables demonstrating the highest reliability were: CSA (ICC=0.93-0.98), strength (ICC=0.97), an index of nerve conduction velocity (ICC=0.95), and H-reflex amplitude (ICC=0.93). Conversely, the variables demonstrating the lowest reliability were: the amplitude of voluntary EMG signal (ICC=0.53-0.88), and the time to task failure of a sustained submaximal contraction (ICC=0.64). Additionally, relatively little systematic bias (calculated through the limits of agreement) was observed in these measures over the repeat sessions. In conclusion, while the reliability differed between the various measures, in general it was rather high even when the testing sessions are separated by a relatively long duration of time.  相似文献   

14.
To determine the relation between muscle fiber conduction velocity (MFCV) and muscle fiber diameter (MFD) in pathological conditions, we correlated invasively measured MFCV values with MFD data obtained from muscle needle biopsies in 96 patients with various neuromuscular disorders. MFCV was significantly correlated with MFD and independent of the underlying disorder. Pathological diameter changes were fiber-type dependent, with corresponding MFCVs. A linear equation expresses the relation well: MFCV (m/s)=0.043.MFD (microm)+0.83. We conclude that fiber diameter determines MFCV largely independent of the underlying neuromuscular disorders studied.  相似文献   

15.
Neural, mechanical and muscle factors influence muscle force production. This study was, therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P<0.01-0.001) with higher rates for force production (P<0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.  相似文献   

16.
The purpose of this study was to evaluate the neuromuscular adaptation that occurred with aging, by comparing young and aged subjects with respect to changes in surface EMG from the tibialis anterior muscle during fatiguing contractions. EMG variables such as the averaged rectified value (ARV), median frequency (MDF), and muscle fiber conduction velocity (MFCV) were calculated during maximal (MVC, 3 sec) and submaximal (60% MVC, 60 sec) isometric contractions. Muscular force, ARV, MDF, and MFCV during MVC were significantly greater in the young than in the elderly (p < 0.05). EMG amplitude increased and the waveform slowed in all subjects during submaximal contractions, indicating the development of local muscle fatigue. As fatigue progressed, the ARV increased and the MDF and MFCV decreased significantly (p < 0.01). The fatigue-induced changes in the MDF and MFCV were significantly smaller in aged than in young subjects (p < 0.05), a trend also seen in the ARV change, which means that the elderly cannot be fatigued as much as the young with contractions of the same relative intensity. These results as a whole suggest that the aged subjects hold an adaptive motor strategy to cope with age-related neuromuscular deteriorations, due to the decline of motor unit activation and selective atrophy of fast twitch muscle fibers.  相似文献   

17.
It has been identified that the peroneus longus presents a regional activity. Specifically, a greater activation of the anterior and posterior compartments has been observed during eversion, whereas a lower activation of the posterior compartment has been reported during plantarflexion. In addition to myoelectrical amplitude, motor unit recruitment can be inferred indirectly from muscle fiber conduction velocity (MFCV). However, there are few reports of MFCV of the regions that make up a muscle, and even less, MFCV of the peroneus longus compartments. This study aimed to analyze the MFCV of peroneus longus compartments during eversion and plantarflexion. Twenty-one healthy individuals were assessed. High-density surface electromyography was recorded from the peroneus longus during eversion and plantarflexion at 10%, 30%, 50%, and 70% of maximal voluntary isometric contraction. The posterior compartment presented a lower MFCV than the anterior compartment during plantarflexion, and both compartments did not show differences in MFCV during eversion; however, the posterior compartment showed an increase in MFCV during eversion compared to plantarflexion. Differences observed in the MFCV of the peroneus longus compartments could support a regional activation strategy and, to some extent, explain different motor unit recruitment strategies of the peroneus longus during ankle movements.  相似文献   

18.
Muscle co-activation around the knee is important during ambulation and balance. The wide range of methodological approaches for the quantification of co-activation index (CI) makes comparisons across studies and populations difficult. The present study determined within- and between-session reliability of different methodological approaches for the quantification of the CI of the knee extensor and flexor muscles during maximum voluntary isometric contractions (MVICs). Eight healthy volunteers participated in two repeated testing sessions. A series of knee extension MVICs of the dominant leg with concomitant torque and electromyographic (EMG) recordings were captured. CI was calculated utilizing different analytical approaches. Intraclass correlation coefficient (ICC) showed that within-session measures displayed higher reliability (ICC > 0.861) and lower variability (Coefficient of variation; CV < 21.8%) than between-session measures (ICC < 0.645; CV > 24.2%). A selection of a 500 ms or larger window of RMS EMG activity around the PT delivered more reliable and less variable results than other approaches. Our findings suggest that the CI can provide a reliable measure for comparisons among conditions and is best utilized for within-session experimental designs.  相似文献   

19.
The muscle compound action potential (M wave) recorded under monopolar configuration reflects both the propagation of the action potentials along the muscle fibres and their extinction at the tendon. M waves recorded under a bipolar configuration contain less cross talk and noise than monopolar M waves, but they do not contain the entire informative content of the propagating potential. The objective of this study was to compare the effect of changes in muscle fibre conduction velocity (MFCV) on monopolar and bipolar M waves and how this effect depends on the distance between the recording electrodes and tendon. The study was based on a simulation approach and on an experimental investigation of the characteristics of surface M waves evoked in the vastus lateralis during 4-s step-wise isometric contractions in knee extension at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% MVC. The peak-to-peak duration (Durpp) and median frequency (Fmedian) of the M waves were calculated. For monopolar M waves, changes in Durpp and Fmedian produced by MFCV depended on the distance from the electrode to the tendon, whereas, for bipolar M waves, changes in Durpp and Fmedian were largely independent of the electrode-to-tendon distance. When the distance between the detection point and tendon lay between approximately 15 and 40 mm, changes in Durpp of bipolar M waves were more pronounced than those of distal monopolar M waves but less marked than those of proximal monopolar M waves, and the opposite occurred for Fmedian. Since, for bipolar M waves, changes in duration and power spectral features produced by alterations in MFCV are not influenced by the electrode-to-tendon distance, the bipolar electrode configuration is a preferable choice over monopolar arrangements to estimate changes in conduction velocity.  相似文献   

20.
This study examined the reliability and scaling of the flexor carpi radialis (FCR) V-wave during submaximal and maximal voluntary muscle contractions (MVC). 23 participants were tested on three separate sessions. For each session, participants performed isometric wrist flexions at five contraction levels (20, 40, 60, 80 and 100 %MVC). When the target contraction level was reached, a supramaximal electrical stimulus was applied to the median nerve in order to elicit an FCR V-wave. Across all participants, the FCR V-wave amplitude, normalized to its superimposed M-wave amplitude, increased from 0.030 ± 0.001 to 0.143 ± 0.015 (P < 0.001) as the muscle contraction increased from 20 to 100 %MVC. Contraction level did not influence the reliability of evoking the FCR V-wave, as the V-wave demonstrated both stability and consistency. With the exception of a single day main effect during the 20 %MVC condition, V:Msup was not different across days or trials (P > 0.05) indicating measurement stability. High reliability co-efficients (0.827–0.913) at each contraction level signified measurement consistency. This study establishes that FCR V-waves can be reliably evoked during both submaximal and maximal muscle contractions and suggests the possibility for FCR V-wave recordings to be used to document neuromuscular adaptations associated with factors such as training or fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号