首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bilirubin is a powerful antioxidant that suppresses the inflammatory process. However its interaction with proinflammatory PLA2 enzyme is not known. Inhibition of several secretory phospholipase A2 (sPLA2) enzyme activities by bilirubin was studied using 14C-oleate labeled Escherichia coli as substrate. Bilirubin inhibits purified sPLA2 enzyme from Vipera russellii and Naja naja venom and partially purified sPLA2 enzymes from human ascitic fluid, pleural fluid and normal serum in a dose dependent manner. IC50 values calculated for these enzymes ranges from 1.75 to 10.5 μM. Inflammatory human sPLA2 enzymes are more sensitive to inhibition by bilirubin than snake venom sPLA2s. Inhibition of sPLA2 activity by bilirubin is independent of calcium concentration. Increasing substrate concentration (upto 180 nmol) did not relieve the inhibition of sPLA2 by bilirubin and it is irreversible. Bilirubin quenched the relative fluorescence intensity of sPLA2 in a dose dependent manner in the same concentration range at which in vitro sPLA2 inhibition was observed. In the presence of bilirubin, apparent shift in the far UV-CD spectra of sPLA2 was observed, indicating a direct interaction with the enzyme. Inhibition of sPLA2 induced mouse paw edema by bilirubin confirms its sPLA2 inhibitory activity in vivo also. These findings indicate that inhibition of sPLA2 by bilirubin is mediated by direct interaction with the enzyme and bilirubin may act as an endogenous regulator of sPLA2 enzyme activity.  相似文献   

2.
We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA2-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA2 activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA2 and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA2s. The recombinant sPLA2s were inhibited by sPLA2 inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA2 genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA2s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA2s showed the presence of the sPLA2 enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA2 genes that mediate nodulation reactions strongly supports our hypothesis that sPLA2s are central enzymes in insect cellular immune reactions.  相似文献   

3.
Secreted phospholipases A2 (sPLA2s) are molecules released in plasma and biological fluids of patients with systemic inflammatory, autoimmune and allergic diseases. These molecules exert proinflammatory effects by either enzymatic-mechanisms or through binding to surface molecules expressed on inflammatory cells. sPLA2s are released at low levels in the normal airways and tend to increase during respiratory allergies (e.g., rhinitis and bronchial asthma) as the result of local secretion. Several sPLA2 isoforms are expressed in the human lung and some of them (e.g., group IIA and group X) are released in the airways of patients with rhinitis or asthma. Mast cells play a major role in the pathogenesis of respiratory allergies and other chronic inflammatory lung diseases. Recent evidence indicates that mast cells purified from human lung express most of the sPLA2 isoforms so far described. IgE-mediated activation of these cells induce the release of sPLA2s suggesting that mast cells are a main source of extracellular sPLA2s during allergic reactions. Once released, sPLA2s may contribute to the generation of eicosanoids (e.g., PGD2 and LTC4) and to the release of preformed mediators (e.g., histamine) by an autocrine loop involving the interaction of sPLA2s with surface molecules such as heparan sulphate proteoglycans or the M-type receptor. Thus, mast cell-derived sPLA2s may play an important role in the initiation and amplification of the inflammatory reactions in patients with allergic rhinitis and bronchial asthma.  相似文献   

4.
The lipoxygenase isoform of 5-lipoxygenase (5-LOX) is reported to be overexpressed in human rheumatoid arthritis synovial tissue and involved in the progress of inflammatory arthritis. However, the detailed mechanism of how 5-lipoxygenase regulates the inflammatory response in arthritis synovial tissue is still unclear. The aim of this study was to investigate the involvement of lipoxygenase pathways in TNF-α-induced production of cytokines and chemokines. Human synovial fibroblasts from rheumatoid patients were used in this study. 5-LOX inhibitors and shRNA were used to examine the involvement of 5-LOX in TNF-α-induced cytokines and chemokines expression. The signaling pathways were examined by Western Blotting or immunofluorescence staining. The effect of 5-LOX inhibitor on TNF-α-induced chemokine expression and paw edema was also explored in vivo in C57BL/6 mice. Treatment with 5-LOX inhibitors significantly decreased TNF-α-induced pro-inflammatory mediators including interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) in human synovial fibroblasts. Knockdown of 5-LOX using shRNA exerted similar inhibitory effects. The abrogation of NF-κB activation was involved in the antagonizing effects of these inhibitors. Furthermore, 5-LOX inhibitor decreased TNF-α-induced up-regulation of serum MCP-1 level and paw edema in mouse model. Our results provide the evidence that the administration of 5-LOX inhibitors is able to ameliorate TNF-α-induced cytokine/chemokine release and paw edema, indicating that 5-LOX inhibitors may be developed for therapeutic treatment of inflammatory arthritis.  相似文献   

5.
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.  相似文献   

6.
Phospholipases A2 (PLA2) are enzymes that cleave the sn-2 bond of membrane phospholipids to yield free fatty acids and lysophospholipids. Secretory PLA2-III (sPLA2-III) has been suggested to be important for neuronal differentiation, growth and survival, and is highly expressed in the spinal cord. The aim of this study is to elucidate its expression and distribution in different regions of the adult rat CNS. Quantitative RT-PCR analyses showed high levels of sPLA2-III mRNA expression in the brainstem and spinal cord and low expression in the olfactory bulb. Western blot analyses showed high level of expression in the brainstem, spinal cord and cerebral neocortex. A dense band corresponding to the catalytically active, mature/cleaved form, and a faint band corresponding to the full length sPLA2-III were detected in post-mitochondrial supernatants, from different parts of the CNS. Subcellular fractionation of spinal cord homogenates showed that sPLA2-III protein is present in the ‘light membrane/cytosol’ fraction, but not the nucleus, synaptosomal membrane or synaptic vesicle-enriched fractions. sPLA2-III was immunolocalized to neurons in the cerebral neocortex, Purkinje neurons in the cerebellar cortex, periaqueductal gray, red nucleus, spinal trigeminal nucleus and dorsal horn of the spinal cord. Electron microscopy of the spinal cord and cerebral neocortex showed that sPLA2-III was localized in dendrites or dendritic spines, that formed asymmetrical synapses with unlabeled, putatively glutamatergic, axon terminals. The localization of mature/cleaved form of sPLA2-III in postsynaptic structures suggest a physiological role of the enzyme in neurotransmission or synaptic plasticity.  相似文献   

7.
8.
The snake venom MT-III is a group IIA secreted phospholipase A2 (sPLA2) enzyme with functional and structural similarities with mammalian pro-inflammatory sPLA2s of the same group. Previously, we demonstrated that MT-III directly activates the innate inflammatory response of macrophages, including release of inflammatory mediators and formation of lipid droplets (LDs). However, the mechanisms coordinating these processes remain unclear. In the present study, by using TLR2−/− or MyD88−/− or C57BL/6 (WT) male mice, we report that TLR2 and MyD88 signaling have a critical role in MT-III-induced inflammatory response in macrophages. MT-III caused a marked release of PGE2, PGD2, PGJ2, IL-1β and IL-10 and increased the number of LDs in WT macrophages. In MT-III-stimulated TLR2−/− macrophages, formation of LDs and release of eicosanoids and cytokines were abrogated. In MyD88−/− macrophages, MT-III-induced release of PGE2, IL-1β and IL-10 was abrogated, but release of PGD2 and PGJ2 was maintained. In addition, COX-2 protein expression seen in MT-III-stimulated WT macrophages was abolished in both TLR2−/− and MyD88−/− cells, while perilipin 2 expression was abolished only in MyD88−/− cells. We further demonstrated a reduction of saturated, monounsaturated and polyunsaturated fatty acids and a release of the TLR2 agonists palmitic and oleic acid from MT-III-stimulated WT macrophages compared with WT control cells, thus suggesting these fatty acids as major messengers for MT-III-induced engagement of TLR2/MyD88 signaling. Collectively, our findings identify for the first time a TLR2 and MyD88-dependent mechanism that underlies group IIA sPLA2-induced inflammatory response in macrophages.  相似文献   

9.
Although the expression of the prototypic secretory phospholipase A2 (sPLA2), group IIA (sPLA2-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA2 enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA2s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA2-V, and to a lesser extent that of sPLA2-IID, -IIE, and -IIF, were increased, whereas that of sPLA2-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA2-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA2-IIA inhibitor that turned out to inhibit sPLA2-IID, -IIE, -V and -X as well. In contrast, sPLA2-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA2s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

10.
Neutrophils (PMN) contain two types of phospholipase A2 (PLA2), a 14 kDa ‘secretory’ Type II PLA2 (sPLA2) and an 85 kDa ‘cytosolic’ PLA2 (cPLA2), that differ in a number of key characteristics: (1) cPLA2 prefers arachidonate (AA) as a substrate but hydrolyzes all phospholipids; sPLA2 is not AA specific but prefers ethanolamine containing phosphoacylglycerols. (2) cPLA2 is active at nM calcium (Ca2+) concentrations; sPLA2 requires μM Ca2+ levels. (3) cPLA2 activity is regulated by phosphorylation; sPLA2 lacks phosphorylation sites. (4) cPLA2 is insensitive to reduction; sPLA2 is inactivated by agents that reduce disulfide bonds. We utilized PMN permeabilized with Staphylococcus aureus α-toxin to determine whether one or both forms of PLA2 were activated in porated cells under conditions designed to differentiate between the two enzymes. PMN were labeled with [3H]AA to measure release from phosphatidylcholine and phosphatidylinositol; gas chromatography-mass spectrometry was utilized to determine total AA release (mainly from phosphatidylethanolamine) and to asses oleate and linoleate mass. A combination of 500 nM Ca2+, a guanine nucleotide, and stimulation with n-formyl-met-leu-phe (FMLP) were necessary to induce maximal AA release in permeabilized PMN measured by either method; AA was preferentially released. [3H]AA and AA mass release occurred in parallel over time. A hydrolyzable form of ATP was necessary for maximum AA release and staurosporin inhibited PLA2 activation. Dithiothreitol treatment had little affect on [3H]AA release and metabolism but inhibited AA mass release. Assay of cell supernatants after cofactor addition did not detect sPLA2 activity and the cytosolic buffer utilized did not support activity of recombinant sPLA2. These results strongly suggested that cPLA2 was the enzyme activated in the permeabilized cell model and this is the first report which unambiguously demonstrates AA release in response to activation of a specific type of PLA2 in PMN.  相似文献   

11.
12.
Secretory phospholipase A2 type IIA (sPLA2) may actively contribute to atherogenesis, acting either within the arterial wall or in plasma. Proinflammatory eicosanoids and lysophospholipids, generated through hydrolysis of cell membrane phospholipids by sPLA2, initiate and prolong the inflammatory process. In the present study we examined the possible involvement of sPLA2 in development of restenosis in patients undergoing percutaneous transluminal coronary angioplasty (PTCA). We also investigated whether serum sPLA2 could catalyze accumulation of lysophosphatidylcholine (LPC) in LDL. Concentrations and catalytic activities of sPLA2 were measured in blood serum of 49 consenting patients immediately before, 1–7 and 180 days after PTCA. All patients had repeat angiograms at 180-day follow-up. Restenosis was registered in 19 patients. Accumulation of LPC in LDL was evaluated by thin-layer chromatography after incubation of blood serum with LDL. Serum sPLA2 concentrations increased in all study patients by day 1 post-PTCA, but the increase was significantly greater and more protracted in patients who developed restenosis. Catalytic activities increased significantly 6 days post-PTCA in patients who developed restenosis, whereas for patients without restenosis there was no change in serum sPLA2 activity throughout the study period in spite of the sPLA2 presence in blood. Incubation of blood serum (6 days post-PTCA) with LDL resulted in accumulation of LPC only for those patients who subsequently developed restenosis. Manoalide, a specific inhibitor of sPLA2, completely blocked the LPC accumulation. The data indicate that elevated serum sPLA2 activity after PTCA is associated with restenosis development and may be involved in atherogenic modification of LDL in blood serum. (Mol Cell Biochem 270: 107–113, 2005)  相似文献   

13.
Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.  相似文献   

14.

Background

Phospholipases A2 (PLA2) hydrolyzes phospholipids, initiating the production of inflammatory lipid mediators. We have previously shown that in rats, sPLA2 and cPLA2 play opposing roles in the pathophysiology of ovalbumin (OVA)-induced experimental allergic bronchitis (OVA-EAB), an asthma model: Upon disease induction sPLA2 expression and production of the broncho-constricting CysLTs are elevated, whereas cPLA2 expression and the broncho-dilating PGE2 production are suppressed. These were reversed upon disease amelioration by treatment with an sPLA2 inhibitor. However, studies in mice reported the involvement of both sPLA2 and cPLA2 in EAB induction.

Objectives

To examine the relevance of mouse and rat models to understanding asthma pathophysiology.

Methods

OVA-EAB was induced in mice using the same methodology applied in rats. Disease and biochemical markers in mice were compared with those in rats.

Results

As in rats, EAB in mice was associated with increased mRNA of sPLA2, specifically sPLA2gX, in the lungs, and production of the broncho-constricting eicosanoids CysLTs, PGD2 and TBX2 in bronchoalveolar lavage (BAL). In contrast, EAB in mice was associated also with elevated cPLA2 mRNA and PGE2 production. Yet, treatment with an sPLA2 inhibitor ameliorated the EAB concomitantly with reverting the expression of both cPLA2 and sPLA2, and eicosanoid production.

Conclusions

In both mice and rats sPLA2 is pivotal in OVA-induced EAB. Yet, amelioration of asthma markers in mouse models, and human tissues, was observed also upon cPLA2 inhibition. It is plausible that airway conditions, involving multiple cell types and organs, require the combined action of more than one, essential, PLA2s.  相似文献   

15.
We have previously shown the expression of group X secretory phospholipase A2 (sPLA2-X) in mouse splenic macrophages and its powerful potency for releasing fatty acids from various intact cell membranes. Here, we examined the potency of sPLA2-X in the production of lipid mediators in murine peritoneal macrophages. Mouse sPLA2-X was found to induce a marked release of fatty acids including arachidonic acid and linoleic acid, which contrasted with little, if any, release by the action of group IB and IIA sPLA2s. In resting macrophages, sPLA2-X elicited a modest production of prostaglandin E2 and thromboxane A2. After the induction of cyclooxygenase-2 (COX-2) by pretreatment with lipopolysaccharide, a dramatic increase in the production of these eicosanoids was observed in sPLA2-X-treated macrophages, which was completely blocked by the addition of either the specific sPLA2 inhibitor indoxam or the COX inhibitor indomethacin. In accordance with its higher hydrolyzing activity toward phosphatidylcholine, mouse sPLA2-X induced a potent production of lysophosphatidylcholine. These findings strongly suggest that sPLA2-X plays a critical role in the production of various lipid mediators from macrophages. These events might be relevant to the progression of various pathological states, including chronic inflammation and atherosclerosis.  相似文献   

16.
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as “non-pancreatic”, “synovial”, “platelet-type”, “inflammatory”, and “bactericidal” sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.  相似文献   

17.
18.
Endotoxic shock is a systemic inflammatory process, involving a variety of proinflammatory mediators. Two types of secretory phospholipase A2 (sPLA2) have been implicated in this process. Group IB sPLA2 (PLA2-IB) binds to the PLA2 receptor (PLA2R), and PLA2R-deficient mice exhibit resistance to endotoxin-induced lethality with reduced plasma levels of proinflammatory cytokines, such as TNF-α. Group IIA sPLA2 (PLA2-IIA) is found in many tissues and cell types, and local and systemic levels are elevated under numerous inflammatory conditions including sepsis. In this study, we investigated the effect of a specific sPLA2 inhibitor, indoxam, on murine endotoxic shock. Indoxam suppressed the elevation of plasma TNF-α with a similar potency in PLA2-IIA-expressing and PLA2-IIA-deficient mice after LPS challenge. In PLA2-IIA-deficient mice, indoxam also suppressed the elevation of plasma IL-1β, IL-6 and NO, and prolonged survival after LPS challenge. Indoxam was found to block the PLA2-IB binding to murine PLA2R with a high potency (Ki=30 nM). The inhibitory effects of indoxam on the LPS-induced elevation of plasma TNF-α levels could not be observed in mice deficient in PLA2R. These findings suggest that indoxam blocks the production of proinflammatory cytokines during endotoxemia through PLA2-IIA-independent mechanisms, possibly via blockade of the PLA2R function.  相似文献   

19.
This study investigates the ways in which two proinflammatory cytokines, tumor necrosis factor α (TNF) and interleukin-1β (IL1), cause increased production of prostaglandin E2(PGE2) in rabbit articular chondrocytes (RAC). Rabbit articular chondrocytes in primary culture were incubated with IL1, TNF, or both. Arachidonic acid (AA) release, PGE2production, and the activities of cytosolic phospholipase A2(cPLA2), secreted phospholipase A2(sPLA2), and cyclooxygenase (COX) were measured. The mRNA levels of cPLA2, sPLA2, and COX-2 were also measured by Northern blotting, using specific complementary DNA probes. Incubation of IL1-stimulated RAC with TNF further increased PGE2production. This synergy did not involve PLA2stimulation, as there were no increases in AA release, cPLA2and sPLA2activities, or mRNA. In contrast, TNF increased the effect of IL1 on COX-2 activity and mRNA level. These results show that TNF and IL1 act in synergy in PGE2production in articular chondrocytes. As sPLA2and cPLA2do not seem to be involved, COX-2 appears to be the best target for a specific anti-inflammatory strategy against cartilage degradation.  相似文献   

20.
Type-IIA secreted phospholipase A2 (sPLA2-IIA) has been proposed to play a role in the development of inflammatory diseases. It has been shown to release arachidonic acid, the precursor of proinflammatory eicosanoids, to hydrolyze phospholipids of pulmonary surfactant, and to bind to specific receptors located on cell surface membranes. However, the most established biological role of sPLA2-IIA is related to its potent bactericidal property in particular toward Gram-positive bacteria. This enzyme is present in animal and human biological fluids at concentrations sufficient to kill bacteria. Human recombinant sPLA2-IIA is able to kill Gram-positive bacteria at concentrations as low as 1.1 ng/ml. This remarkable property is due to the unique preference of sPLA2-IIA for anionic phospholipids such as phosphatidylglycerol, the main phospholipid component of bacterial membranes. Much higher concentrations of sPLA2-IIA are required for its action on host cell membranes and surfactant both of which are mainly composed by phosphatidylcholine, a poor substrate for sPLA2-IIA. Transgenic mice over-expressing human sPLA2-IIA are resistant to infection by Staphylococcus aureus, Escherichia coli, and Bacillus anthracis, the etiological agent of anthrax. Conversely, certain bacteria, such as B. anthracis, E. coli and Bordetella pertussis are able to inhibit sPLA2-IIA expression by host cells, thus highlighting a mechanism by which these bacteria can subvert the host immune system. Intranasal instillation of recombinant sPLA2-IIA protects mice from mortality caused by pulmonary anthrax. Interestingly, this protective effect was obtained even with B. anthracis strains that down-regulate the expression of endogenous sPLA2-IIA, indicating that instilled sPLA2-IIA can overcome the subversive action of B. anthracis. We conclude that sPLA2-IIA is an efficient endogenous antibiotic of the host and can play a role in host defense against pathogenic bacteria. It can be used as a therapeutic agent in adjunct with current therapy to treat bacteria resistant to multiple antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号