首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Interventional cardiac procedures may be associated with high patient doses and therefore require special attention to protect the patients from radiation injuries such as skin erythema, cardiovascular tissue reactions or radiation-induced cancer. In this study, patient exposure data is collected from 13 countries (37 clinics and nearly 50 interventional rooms) and for 10 different procedures. Dose data was collected from a total of 14,922 interventional cardiology procedures. Based on these data European diagnostic reference levels (DRL) for air kerma-area product are suggested for coronary angiography (CA, DRL = 35 Gy cm2), percutaneous coronary intervention (PCI, 85 Gy cm2), transcatheter aortic valve implantation (TAVI, 130 Gy cm2), electrophysiological procedures (12 Gy cm2) and pacemaker implantations. Pacemaker implantations were further divided into single-chamber (2.5 Gy cm2) and dual chamber (3.5 Gy cm2) procedures and implantations of cardiac resynchronization therapy pacemaker (18 Gy cm2). Results show that relatively new techniques such as TAVI and treatment of chronic total occlusion (CTO) often produce relatively high doses, and thus emphasises the need for use of an optimization tool such as DRL to assist in reducing patient exposure. The generic DRL presented here facilitate comparison of patient exposure in interventional cardiology.  相似文献   

2.
PurposeTo establish local diagnostic reference levels (DRLs) for non-cardiac interventional procedures in paediatrics.MethodsThe type of procedure, the patient’s weight and age and dose-related data from 279 interventions was recorded in a database completed by interventional radiologists, radiographers and technicians of the Medical Physics department. These procedures were classified into 14 categories and 6 weight ranges. Local DRLs were proposed for those ranges in which a sample of at least 15 patients could be gathered and were calculated as the third quartile (Q3) of the air kerma-area product (PKA) values. The Q3 of the fluoroscopy time (FT) and number of digital subtraction angiography (DSA) images were also obtained. Finally, the correlation between PKA and weight was analysed.ResultsLocal DRLs are proposed for three types of procedures: hepatic/biliary interventions (5–15 kg, 1304 cGy·cm2; 15–30 kg, 2121 cGy·cm2), sclerotherapy procedures (15–30 kg, 704 cGy·cm2; 30–50 kg, 4049 cGy·cm2; 50–80 kg, 3734 cGy·cm2) and central venous catheter (CVC) procedures (5–15 kg, 84 cGy·cm2). Hepatic/biliary interventions showed a moderate correlation (r = 0.61), while sclerotherapy procedures presented a poor correlation (r = 0.34) between PKA and weight, possibly due to the PKA dependence on the complexity level. Regarding CVC procedures, a clearly higher correlation was found when the fluoroscopy PKA value was normalised to the FT (r = 0.85 vs r = 0.35).ConclusionsThe results support the feasibility of establishing DRLs for the most common procedures (sclerotherapy, hepatic/biliary and CVC interventions) despite the small number of paediatric interventions.  相似文献   

3.
The main objective of this study was to determine the preliminary Diagnostic Reference Levels (DRLs) in terms of Kerma Area Product (KAP) and fluoroscopy time (Tf) during Endoscopic Retrograde Cholangio-Pancreatography (ERCP) procedures. Additionally, an investigation was conducted to explore the statistical relation between KAP and Tf.Data from a set of 200 randomly selected patients treated in 4 large hospitals in Greece (50 patients per hospital) were analyzed in order to obtain preliminary DRLs for KAP and Tf during therapeutic ERCP procedures. Non-parametric statistic tests were performed in order to determine a statistically significant relation between KAP and Tf.The resulting third quartiles for KAP and Tf for hospitals (A, B, C and D) were found as followed: KAPA = 10.7 Gy cm2, TfA = 4.9 min; KAPB = 7.5 Gy cm2, TfB = 5.0 min; KAPC = 19.0 Gy cm2, TfC = 7.3 min; KAPD = 52.4 Gy cm2, TfD = 15.8 min. The third quartiles, calculated for the total 200 cases sample, are: KAP = 18.8 Gy cm2 and Tf = 8.2 min. For 3 out of 4 hospitals and for the total sample, p-values of statistical indices (correlation of KAP and Tf) are less than 0.001, while for the Hospital A p-values are ranging from 0.07 to 0.08. Using curve fitting, we finally determine that the relation of Tf and KAP is deriving from a power equation (KAP = Tf1.282) with R2 = 0.85.The suggested Preliminary DRLs (deriving from the third quartiles of the total sample) for Greece are: KAP = 19 Gy cm2 and Tf = 8 min, while the relation between KAP and Tf is efficiently described by a power equation.  相似文献   

4.
This study aimed to evaluate paediatric radiation doses in a dedicated cardiology hospital, with the objective of characterising patterns in dose variation. The ultimate purpose was to define Local (Institutional) Diagnostic Reference Levels (LDRLs) for different types of paediatric cardiac interventional procedures (IC), according to patient age. From a total of 710 cases performed during three consecutive years, by operators with more than 15 years of experience, the age was noted in only 477 IC procedures. The median values obtained for Fluoroscopy Time (FT), Number of Frames (N) and Kerma Area Product (PKA) by age range were 5.8 min, 1322 and 2.0 Gy.cm2 for <1 y; 6.5 min, 1403 and 3.0 Gy.cm2 for 1 to <5 y; 5.9 min, 950 and 7.0 Gy.cm2 for 5 to <10 y; 5.7 min, 940 and 14.0 Gy.cm2 for 10 to <16 y, respectively. A large range of patient dose data is observed, depending greatly on procedure type and patient age. In all age groups the range of median FT, N and PKA values was 3.1–15.8 min, 579–1779 and 1.0–20.8 Gy.cm2 respectively. Consequently, the definition of LDRLs presents challenges mainly due to the multiple clinical and technical factors affecting the outcome. On the other hand the lack of paediatric IC DRLs makes the identification of good practices more difficult. A consensus is needed on IC procedures nomenclature and grouping in order to allow a common assessment and comparison of doses.  相似文献   

5.
PurposeIn interventional cardiology, patients may be exposed to high doses to the skin resulting in skin burns following single or multiple procedures. Reviewing and analysing available software (online or offline) may help medical physicists assessing the maximum skin dose to the patient together with the dose distribution during (or after) these procedures.Method and resultsCapabilities and accuracy of available software were analysed through an extensive bibliography search and contacts with both vendor and authors. Their markedly differed among developers.In total, 22 software were identified and reviewed according to their algorithms and their capabilities. Special attention was dedicated to their main features and limitations of interest for the intended clinical use.While the accuracy of the 12 software products validated with measurements on phantoms was acceptable (within ± 25%), the agreement was poor for the two products validated on patients (within ± 43% and ± 76%, respectively). In addition, no software has been validated on angiographic units from all manufacturers, though several software developers claimed vendor-independent transportability. Only one software allows for multiple procedures dose calculation.ConclusionLarge differences among vendors made it clear that work remains to be done before an accurate and reliable skin dose mapping is available for all patients.  相似文献   

6.

Aim

The aim of this research is to establish if variation exists in the dose delivered for head and neck (HN) localisation computed tomography (CT) imaging in radiation therapy (RT); to propose a national diagnostic reference levels (DRLs) for this procedure and to make a comparison between the national DRL and a DRL of a European sample.

Background

CT has become an indispensable tool in radiotherapy (RT) treatment planning. It is a requirement of legislation in many countries that doses of ionising radiation for medical exposures be kept ‘As Low As Reasonably Achievable’. There are currently no dose guidelines for RT localisation CT of the HN.

Materials and methods

All RT departments in Ireland and a sample of European departments were surveyed. Dose data on CT dose length product (DLP); dose index volume (CTDIvol); current time product; tube voltage and scan length was acquired for ten average-sized HN patients from each department. DRLs were proposed for DLP and CTDIvol using the rounded 75th percentile of the distribution of the means.

Results

42% of Irish departments and one European department completed the survey. Significant variation was found in the mean DLP, CTDIvol and scan lengths across the Irish departments. The proposed Irish DRL is 882?mGy?cm and 21?mGy and the European department DRL is 816?mGy?cm and 21?mGy, for DLP and CTDIvol, respectively.

Conclusions

Variation exists in doses used for HN RT localisation CT. DRLs have been proposed for comparison purposes with the aim of dose optimisation.  相似文献   

7.
PurposeTo define weight-stratified Diagnostic Reference Levels (DRL) typical values for pediatric interventional cardiology (IC) procedures adopting standardized methodologies proposed by ICRP135 and RP185.MethodsProcedures performed at the pediatric catheterization room of the University-Hospital of Padua were analysed. Patients were stratified into body weight (BW) classes and DRL quantities were analysed for the most performed procedures. Typical values are defined as median PKA and Ka,r. For database consistency, sampling and exclusion methods were precisely defined. The DRL-curve methodology by means of quantile regression median curves was investigated to assess the relationship between PKA and weight. A like-to-like comparison with literature was made.Results385 procedures were analysed. A large PKA variability was observed in each weight group. PKA differences across BW groups were not always statistically significant. When stratifying by procedure, PKA variability decreased while correlations of PKA and PKA/FT with weight increased. The established typical values are generally lower than DRLs published data, whatever stratification method adopted. The highest PKA median values were observed for Angioplasty (4.9 and 11.6 Gycm2 for 5-<15 kg and 15-<30 kg, respectively). The DRL-curve approach shows promising results for Valvuloplasty and Angioplasty.ConclusionsTypical values for pediatric IC DRL quantities were determined according to ICRP135 and RP185 methodologies. Stratification by BW classification does not reduce the variability of the PKA values, unlike what happens when stratifying by procedure type. Results seem to corroborate that variability and exposure are more affected by procedure type and complexity than by patient weight. DRL-curve is a feasible approach.  相似文献   

8.
PurposeInstitutional (local) Diagnostic Reference Levels for Cerebral Angiography (CA), Percutaneous Transhepatic Cholangiography (PTC), Transarterial Chemoembolization (TACE) and Percutaneous Transhepatic Biliary Drainage (PTBD) are reported in this study.Materials and methodsData for air kerma-area product (PKA), air kerma at the patient entrance reference point (Ka,r), fluoroscopy time (FT) and number of images (NI) as well as estimates of Peak Skin Dose (PSD) were collected for 142 patients. Therapeutic procedure complexity was also evaluated, in an attempt to incorporate it into the DRL analysis.ResultsLocal PKA DRL values were 70, 34, 189 and 54 Gy.cm2 for CA, PTC, TACE and PTBD respectively. The corresponding DRL values for Ka,r were 494, 194, 1186 and 400 mGy, for FT they were 9.2, 14.2, 27.5 and 22.9 min, for the NI they were 844, 32, 602 and 13 and for PSD they were 254, 256, 1598 and 540 mGy respectively. PKA for medium complexity PTBD procedures was 2.5 times higher than for simple procedures. For TACE, the corresponding ratio was 1.6. PSD was estimated to be roughly 50% of recorded Ka,r for procedures in the head/neck region and 10% higher than recorded Ka,r for procedures in the body region. In only 5 cases the 2 Gy dose alarm threshold for skin deterministic effects was exceeded.ConclusionProcedure complexity can differentiate DRLs in Interventional Radiology procedures. PSD could be deduced with reasonable accuracy from values of Ka,r that are reported in every angiography system.  相似文献   

9.
ObjectivesTo establish national diagnostic reference levels (DRLs) in Egypt for computed tomography (CT) examinations of adults and identify the potential for optimization.MethodsData from 3762 individual patient’s undergoing CT scans of head, chest (high resolution), abdomen, abdomen-pelvis, chest-abdomen-pelvis and CT angiography (aorta and both lower limbs) examinations in 50 CT facilities were collected. This represents 20% of facilities in the country and all of the 27 Governorates. Results were compared with DRLs of UK, USA, Canada, Japan, Australia and France.ResultsThe Egyptian DRLs for CTDIvol in mGy are for head: 30, chest (high resolution): 22, abdomen (liver metastasis): 31, abdomen-pelvis: 31, chest-abdomen–pelvis: 33 and CT angiography (aorta and lower limbs): 37. The corresponding DRLs for DLP in mGy.cm are 1360, 420, 1425, 1325, 1320 and 1320. For head CT, the Egyptian DRL for CTDIvol is 2–3 times lower than the DRLs from other countries. However, the DRL in terms of DLP is in the same range or higher as compared to others. The Egyptian DRL for chest CT (high resolution) is similar to others for DLP but higher for CTDIvol. For abdomen and abdomen-pelvis DRLs for CTDIvol are higher than others. For DLP, the DRLs for abdomen are higher than DRL in UK and lower than those in Japan, while for abdomen-pelvis they are higher than other countries.ConclusionDespite lower DRLs for CTDIvol, an important consistent problem appears to be higher scan range as DRLs for DLP are higher.  相似文献   

10.
11.
PurposeTo establish diagnostic reference levels (DRLs) and achievable levels (ALs) for the most common fluoroscopically guided interventions (FGIs) performed in operating rooms using mobile C-arm equipment.MethodsA national survey was performed in 57 centers in France. Anonymous data from 6817 patients undergoing FGIs were prospectively collected over a period of 7 months. DRLs (third quartile of the distribution) and ALs (median of the distribution) were determined for each type of intervention in terms of kerma area product (KAP) and fluoroscopy time (FT).ResultsDRLs and ALs were proposed for 31 procedure types related to seven surgical specialties: orthopedics (n = 9), urology (n = 3), vascular (n = 6), cardiology (n = 5), neurosurgery (n = 3), gastrointestinal (n = 3), and multi-specialty (n = 2). DRLs in terms of KAP ranged from 0.1 Gy·cm2 for hallux valgus to 78 Gy·cm2 for abdominal aortic aneurysm endovascular repair. A factor of 155 was obtained between the FTs for a herniated lumbar disk (0.2 min) and an abdominal aortic aneurysm endovascular repair (31 min). The highest variations were obtained within orthopedic procedures in terms of KAP (ratio 122) and within gastrointestinal procedures in terms of FT (ratio 9). Overall, the FGIs associated with the highest radiation exposure (KAP > 10 Gy·cm2) were found in the cardiology, vascular, and gastrointestinal specialties.ConclusionsDRLs and ALs are suggested for a wide range of FGIs performed in operating rooms using a mobile C-arm. We aim at providing a practical optimization tool for medical physicists and surgeons.  相似文献   

12.
13.
PurposeThe aim of this study was to assess patient exposure data and operator dose in coronary interventional procedures, when considering patient body-mass index and procedure complexity.MethodsTotal air kerma area product (PKA), Air-Kerma (AK), Fluoroscopy time (FT), operator dose and patient body-mass index (BMI) from 97 patients’ procedures (62 coronary angiography (CA) and 35 Percutaneous Coronary Intervention (PCI) were collected for one year. For PCI procedures, also the complexity index-CI was collected. Continuous variables for each of the 2 groups procedures (CA and PCI) were compared as medians with interquartile range and using Mann-Whitney U test. Multiple group data were compared using Kruskal-Wallis test (significance: p < 0.05).ResultsMedian PKA was 63 and 125 Gy cm2 for CA and PCI respectively (p < 0.001); FT was 3 and 14 min, respectively (p < 0.001). PKA and FT significantly increased (p < 0.05) with BMI class for CA procedures. PKA and FT also increased in function of CI class for PCI, thought significantly only for FT (p < 0.001), possibly because of the low number of PCI procedures included; cine mode contributed most to PKA. Significant dose variability was observed among cardiologists for CA procedures (p < 0.001).ConclusionsDose references levels for PKA and FT in interventional cardiology should be defined - on a sufficient number of procedures- in function of CI and BMI classes. These could provide an additional tool for refining a facility’s quality assurance and optimization processes. Dose variability associated with cardiologists underlines the importance of continuous training.  相似文献   

14.
PurposeIn order to introduce the concept of diagnostic reference levels (DRLs) in the national nuclear medicine practice a survey was proposed and completed through all nuclear medicine departments in Croatia. An additional aim was to increase the awareness of importance and full implementation of a comprehensive quality program that includes devices used in the nuclear medicine chain.MethodsData were collected for more than 30 nuclear medicine single photon emission procedures. National DRLs (NDRLs) as administered activity and also as administered activity per unit mass were calculated in accordance to International Commission on Radiological Protection (ICRP) recommendations. Additionally, effective doses were estimated using conversion factors published by the ICRP.ResultsNDRLs for nuclear medicine single photon emission procedures were proposed. For procedures performed in only one department typical values were presented as reference. Effective doses related to applied radiopharmaceuticals were calculated to estimate radiation risk related to respective nuclear medicine procedure in more detail.ConclusionThis work presents results of the first national survey on DRLs of nuclear medicine single photon emission procedures and proposes reliable NDRLs that represent an actual status of nuclear medicine practice in Croatia. Results have motivated departments to introduce and set their own typical values to be used, as one of the tools, for further optimization process. One of the drawbacks of the DRL concept in nuclear medicine is the lack of the image quality parameters involved. For this reason, a quantity that considers both radiation protection and image quality should be introduced.  相似文献   

15.
PurposeThe purpose of this study was to determine local DRLs for children and adults undergoing intraoral dental examinations at the intraoral radiology units of the public hospitals in Cyprus.MethodsMeasurements were made on all the twenty intraoral X-ray units of the public hospitals in Cyprus with the intention to establish the local DRLs for all the possible intraoral X-ray examinations for children and adults. All units are film based. The measurements were made by a Dose Area Product (DAP) meter (GAMMEX RMI 841-RD) placed at the surface of the dental unit’s X-ray shaping cone (FSD 20 cm). A diagnostic radiology dosimeter (Dosimax Plus A) was also placed at an FSD of 100 cm to compare the dose reading between the two dosimeters.ResultsDRLs were established at the 3rd quartile for 7 exposure settings corresponding to 12 types of teeth (Adult and children mandibular and maxillary incisor, premolar and molar) with values of 197, 163, 128, 102, 81, 65 and 49 mGycm−2 and 7.23, 5.94, 4.75, 3.68, 3.10, 2.41 and 1.88 mGy for benchmark nominal exposure times of 1000, 800, 640, 500, 400, 320 and 250 ms respectively, at a nominal exposure voltage of 70 kVp.ConclusionsThe local DRLs of the present study compare well with other similar published DRLs.  相似文献   

16.
In the period 2013–2016 the National Centre of Radiobiology and Radiation Protection (NCRRP) at the Ministry of Health of Bulgaria has developed a web based platform for performing national patient dose surveys and establishing Diagnostic Reference Levels (DRLs). It is accessible via internet browser, allowing the users to submit data remotely. Electronic questionnaires, specific for radiography, fluoroscopy, image guided interventional procedures, mammography and CT, were provided. Short and clear manuals were added to guide users and minimise human errors. The web-based data collection platform is functional and is currently being used for performing the third national dose survey in Bulgaria, launched in 2016. Data analysis is facilitated due to the standardisation of collected data and their storing. Using the platform, the participating facilities can establish their typical dose levels based on the median value, and compare them to DRLs. A disadvantage of the platform is the need to enter data manually, but it is opened for future upgrades for automatic data harvesting and analysis. Various practical approaches were used to overcome the lack of qualified human resources and insufficient understanding of the DRL and dose tracking concept and to motivate facilities to submit data.  相似文献   

17.
为了制备麻疹减毒活疫苗国家参考品,选用国内麻疹疫苗生产株沪191制备麻疹疫苗参考品。生产过程中严格控制精密性、水分含量,对候选参考品进行鉴别试验、水分含量、病毒滴度及无菌检查等检验。检验合格后组织进行候选参考品病毒滴度协作标定,共有5个实验室参加了协作标定。协作标定完成后,对实验室内变异、实验室间变异及国际参考品在不同实验室间的变异进行了分析。此外还对疫苗进行了热稳定性和实时稳定性分析。结果显示经5个实验室协作标定后,麻疹减毒活疫苗国家参考品的滴度为4.96±0.26 lgCC ID50/m l,实验室内部变异在1.09%~4.64%之间,实验室间变异为2.62%。国际参考品在不同实验室间的变异为4.19%。稳定性考核数据表明制备的参考品具有较好的稳定性,符合作为麻疹减毒活疫苗国家参考品的要求,滴度为4.96±0.26 lgCC ID50/m l。  相似文献   

18.
IntroductionInterventional procedures are associated with potentially high radiation doses to the skin. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. Monte Carlo codes of radiation transport are considered to be one of the most reliable tools available to assess doses. However, they are usually too time consuming for use in clinical practice. This work presents the validation of the fast Monte Carlo code MC-GPU for application in interventional radiology.MethodologiesMC-GPU calculations were compared against the well-validated Monte Carlo simulation code PENELOPE/penEasy by simulating the organ dose distribution in a voxelized anthropomorphic phantom. In a second phase, the code was compared against thermoluminescent measurements performed on slab phantoms, both in a calibration laboratory and at a hospital.ResultsThe results obtained from the two simulation codes show very good agreement, differences in the output were within 1%, whereas the calculation time on the MC-GPU was 2500 times shorter. Comparison with measurements is of the order of 10%, within the associated uncertainty.ConclusionsIt has been verified that MC-GPU provides good estimates of the dose when compared to PENELOPE program. It is also shown that it presents very good performance when assessing organ doses in very short times, less than one minute, in real clinical set-ups. Future steps would be to simulate complex procedures with several projections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号