首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Super‐resolution microscopy techniques can provide answers to still pending questions on prokaryotic organisms but are yet to be used at their full potential for this purpose. To address this, we evaluate the ability of the rhodamine‐like KK114 dye to label various types of bacteria, to enable imaging of fine structural details with stimulated emission depletion microscopy (STED). We assessed fluorescent labeling with KK114 for eleven Gram‐positive and Gram‐negative bacterial species and observed that this contrast agent binds to their cell membranes. Significant differences in the labeling outputs were noticed across the tested bacterial species, but importantly, KK114‐staining allowed the observation of subtle nanometric cell details in some cases. For example, a helix pattern resembling a cytoskeleton arrangement was detected in Bacillus subtilis. Furthermore, we found that KK114 easily penetrates the membrane of bacterial microorganism that lost their viability, which can be useful to discriminate between living and dead cells.  相似文献   

2.
Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed.  相似文献   

3.
Pectobacterium and Dickeya spp. are soft rot Pectobacteriaceae that cause aggressive diseases on agricultural crops leading to substantial economic losses. The accurate, rapid and low‐cost detection of these pathogenic bacteria are very important for controlling their spread, reducing the consequent financial loss and for producing uninfected potato seed tubers for future generations. Currently used methods for the identification of these bacterial pathogens at the strain level are based mainly on molecular techniques, which are expensive. We used an alternative method, infrared spectroscopy, to measure 24 strains of five species of Pectobacterium and Dickeya. Measurements were then analyzed using machine learning methods to differentiate among them at the genus, species and strain levels. Our results show that it is possible to differentiate among different bacterial pathogens with a success rate of ~99% at the genus and species levels and with a success rate of over 94% at the strain level.  相似文献   

4.
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1, τ2 and p1), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.  相似文献   

5.
The aim of this study was to demonstrate the presence of yeast and bacterial biofilms on the surface of tracheoesophageal voice prostheses (TVPs) by a double-staining technique with confocal laser scanning microscopy (CLSM). Biofilms of 12 removed TVPs were visualized by scanning electron microscopy, then stained with ConA-FITC and propidium iodide for CLSM. Microbial identification was by partial 16S rRNA gene analysis and ITS-2 sequence analysis. Microbial biofilms on the TVPs consisted of bacteria and filamentous cells. Bacterial cells were attached to the filamentous and unicellular yeast cells, thus forming a network. Sequence analyses of six voice prostheses identified the presence of a variety of bacterial and yeast species. In vivo studies showed that Klebsiella oxytoca and Micrococcus luteus efficiently attached to Candida albicans. CLSM with double fluorescence staining can be used to demonstrate biofilm formations composed of a mixture of yeast and bacterial cells on the surface of TVPs.  相似文献   

6.
Lutzomyia longipalpis and Lutzomyia cruzi are the main sandflies species involved in the transmission of Leishmania infantum protozoan in Brazil. The morphological characteristics can be used for species identification of males specimens, while females are indistinguishable. Although, sandflies identification is essential to understand vectorial capacity, and susceptibility to infectious agents or insecticides, there is a lack of new strategies for specimen identification. In this study, Fourier transform infrared photoacoustic spectroscopy combined with multivariate analysis identified intraspecific differences between Lutzomyia populations. Successfully group clustering was achieved by principal component analysis. The main differences observed can be related to the protein content of the specimens. A classification with 100% accuracy was obtained using machine learning approach, allowing the identification of sandflies specimens.  相似文献   

7.
Aims: To propose a universal workflow of sample preparation method for the identification of highly pathogenic bacteria by MALDI‐TOF MS. Methods and Results: Fifteen bacterial species, including highly virulent Gram‐positive (Bacillus anthracis and Clostridium botulinum) and Gram‐negative bacteria (Brucella melitensis, Burkholderia mallei, Francisella tularensis, Shigella dysenteriae, Vibrio cholerae, Yersinia pestis and Legionella pneumophila), were employed in the comparative study of four sample preparation methods compatible with MALDI‐TOF MS. The yield of bacterial proteins was determined by spectrophotometry, and the quality of the mass spectra, recorded in linear mode in the range of 2000–20 000 Da, was evaluated with respect to the information content (number of signals) and quality (S/N ratio). Conclusions: Based on the values of protein concentration and spectral quality, the method using combination of ethanol treatment followed by extraction with formic acid and acetonitrile was the most efficient sample preparation method for the identification of highly pathogenic bacteria using MALDI‐TOF MS. Significance and Impact of the Study: The method using ethanol/formic acid generally shows the highest extraction efficacy and the spectral quality with no detrimental effect caused by storage. Thus, this can be considered as a universal sample preparation method for the identification of highly virulent micro‐organisms by MALDI‐TOF mass spectrometry.  相似文献   

8.
This study focuses on the characterization of bacterial and yeast species through their autofluorescence spectra. Lactic acid bacteria (Lactobacillus sp.), and yeast (Saccharomyces sp.) were cultured under controlled conditions and studied for variations in their autofluorescence, particularly in the area representative of tryptophan residues of proteins. The emission and excitation spectra clearly reveal that bacterial and yeast species can be differentiated by their intrinsic fluorescence with UV excitation. The possibility of differentiation between different strains of Saccharomyces yeast was also studied, with clear differences observed for selected strains. The study shows that fluorescence can be successfully used to differentiate between yeast and bacteria and between different yeast species, through the identification of spectroscopic fingerprints, without the need for fluorescent staining.  相似文献   

9.
Coherent anti‐Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two‐photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5‐aminolevulinic acid‐induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition.

Experimental glioblastoma expressing green fluorescent protein.  相似文献   


10.
The leukocyte CD44 and CD45 cell surface receptors are associated via the linker proteins ankyrin and fodrin with the cytoskeleton, which itself is important in immune cell functions such as adherence, chemotaxis, and phagocytosis. The effects of rat antihuman CD44 and CD45 monoclonal antibodies on phagocytosis of fluoresceinated heat-killed Staphylococcus aureus 502A by normal human neutrophils (PMNs) during 2 hr incubation in RPMI-1640 was studied via flow cytometry and confocal microscopy. Flow cytometry was performed using an excitation wavelength of 488 nm, fluorescence being measured at 515–560 nm on 50,000 PMNs per sample. Confocal microscopy was performed on samples after further incubation with rhodamine-conjugated antiankyrin. Anti-CD44 resulted in an increase of 27–31% compared to control (P = 0.004) in the proportion of PMNs fluorescing, an increase of 17–24% (P = 0.001) in mean intracellular fluorescence per PMN, and an increase in total PMN fluorescence of 50–58% compared to control (P < 0.001). In contrast, anti-CD45 had little effect on phagocytosis. Colchicine (a microtubule-disrupting agent) enhanced, whereas cytochalasin-D (a microfilament inhibitor) inhibited bacterial phagocytosis; cytochalasin-D completely abrogated the effect of anti-CD44 on this PMN function. Hyaluronic acid augmented phagocytosis by an increment similar to that observed with anti-CD44. Two-color flow cytometry and confocal microscopy demonstrated that ankyrin always colocalized with ingested fluorescein isothiocyanate (FITC)-labeled bacteria. These data strongly suggest that CD44 is involved in bacterial phagocytosis, provide further evidence of CD44 receptor linkage to cytoskeletal elements in human leukocytes, and suggest that ankyrin has a significant role in the transport of phagosomes. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Caenorhabditis elegans is a free living soil nematode and thus in its natural habitat, C. elegans encounters many different species of soil bacteria. Although some soil bacteria may be excellent sources of nutrition for the worm, others may be pathogenic. Thus, we undertook a study to understand how C. elegans can identify their preferred food using a simple behavioral assay. We found that there are various species of soil bacteria that C. elegans prefers in comparison to the standard laboratory E. coli strain OP50. In particular, two bacterial strains, Bacillus mycoides and Bacillus soli, were preferred strains. Interestingly, the sole feeding of these bacteria to wild type animals results in extended lifespan through the activation of the autophagic process. Further studies will be required to understand the precise mechanism controlling the behavior of identification and selection of food in C. elegans.  相似文献   

12.
Aims: To survey paperboard products from 17 US mills for bacterial populations and for bacteria potentially harmful to human health. Methods and Results: Culturable aerobic bacteria were isolated from paperboard products using selective and nonselective medium. Resulting colonies from samples from three regions of the United States were identified using fatty acid methyl ester analysis. Percentages of bacteria species found were Bacillus megaterium (47), Bacillus licheniformis (15), Bacillus pumilus (12), Paenibacillus macerans (5), Paenibacillus pabuli (3), Bacillus subtilis (2), Bacillus cereus (2), Bacillus coagulans (1), Bacillus circulans (1), Bacillus brevis (1), Bacillus thuringiensis (1), Paenibacillus polymyxa (1), Cellulomonas turbata (1), Cellulomonas flavigena (1), unidentified Bacillus sp. (3) and unidentified bacteria (1). Conclusions: Recycled paperboard contained high populations of bacteria, and a positive correlation was found between recycle content and bacterial populations. Escherichia coli, Salmonella, Shigella or confirmed coliform bacteria were not found in any product. Significance and Impact of the Study: Populations of bacteria did not differ significantly from original counts over a 4‐month period of dry storage, indicating that bacteria persist in paperboard over long periods and may re‐enter the recycling process. The predominance of heat‐tolerant endospore‐forming bacteria explains the high bacteria counts found in paperboard made from recycled materials .  相似文献   

13.
For a long time it was thought that Bursaphelenchus xylophilus was the only agent of the pine wilt disease. Recently, it was discovered that there are bacteria associated with the nematodes that contribute to the pathogenesis of this disease, mainly through the release of toxins that promote the death of the pines. Among the species most commonly found, are bacteria belonging to the Bacillus, Pantoea, Pseudomonas and Xanthomonas genera.The main objective of this work was to study the effect of inoculation of maritime pine (Pinus pinaster) with four different nematode isolates, in the bacterial population of nematodes and trees, at different stages of disease progression. The monitoring of progression of disease symptoms was also recorded. Also, the identification of bacteria isolated from the xylem of trees and the surface of nematodes was performed by classical identification methods, by the API20E identification system and by sequencing of bacterial DNA.The results showed that for the symptoms progression, the most striking difference was observed for the pines inoculated with the avirulent isolate, C14-5, which led to a slower and less severe aggravation of symptoms than in pines inoculated with the virulent isolates. In general, it was found that bacterial population, inside the tree, increased with disease progression. A superior bacterial quantity was isolated from pines inoculated with the nematode isolates HF and 20, and, comparatively, few bacteria were isolated from pines inoculated with the avirulent isolate. The identification system API20E was insufficient in the identification of bacterial species; Enterobacter cloacae species was identified in 79% of the isolated bacterial colonies and seven of these colonies could not be identified by this method. Molecular identification methods, through bacterial DNA sequencing, allowed a more reliable identification: eleven different bacterial species within the Bacillus, Citrobacter, Enterobacter, Escherichia, Klebsiella, Paenibacillus, Pantoea and Terribacillus genera were identified. General bacterial diversity increased with the progression of the disease. Bacillus spp. were predominant at the earlier stage of disease progression and Klebsiella oxytoca at the later stages. Furthermore, bacterial species isolated from the surface of nematodes were similar to those isolated from the xylem of pines.In the present work new bacterial species were identified which have never been reported before in this type of study and may be associated with their geographical origin (Portugal). P. pinaster, the pine species used in this study, was different from those commonly grown in Japan and China. Furthermore, it was the first time that bacteria were isolated and identified from an avirulent pine wood nematode isolate.  相似文献   

14.
15.
We investigated the intestinal microflora of coastal fish including Takifugu niphobles using both culture techniques and library cloning. As a result, the numbers of bacteria appeared on agar media were 1.0 × 104 to 1.4 × 109 CFU/g (colony forming units/gram), whereas those of total bacteria stained with 4′,6-diamidino-2-phenylindole were 4.7 × 1010 to 1.9 × 1011 cells/gram, irrespective of different fish species. In addition, the culture technique showed that the intestinal microflora in all specimens was mainly composed of the genus Vibrio. In contrast, the direct count method showed that spirochaetes with length of 2.5-4.5 μm were present in the intestinal contents of T. niphobles at high densities, whereas such bacteria could not be detected in those of other fish species. Library cloning yielded the sequences of 16S rRNA genes that were divided into seven taxonomic categories of bacteria including Actinobacteria, Bacilli, Clostridia, Gammaproteobacteria, Mollicutes, Spirochaetes and an unclassified bacterial group. These results demonstrate that the molecular diversity of the intestinal bacteria in T. niphobles based on the clone library method reflects the direct observation by fluorescence microscopy to some extent.  相似文献   

16.
Rapid and adequate identification of anaerobic bacterial species still presents a challenge for most diagnostic laboratories, hindering the selection of appropriate therapy. In this study, the identification capacity of 16S rRNA sequence analysis, VITEK 2 (BioMérieux, Lyon, France) compact analysis and VITEK MS‐mediated identification for anaerobic bacterial species was compared. Eighty‐five anaerobic bacterial isolates from 11 provinces in China belonging to 14 genera were identified by these three methods. Differences in identification between these three methods were compared. Consistent identification results were obtained for 54 (54/85, 63.5%) isolates by all three methods, the most discordant results being concentrated in Clostridium XI (n = 8) and Bacteroides fragilis (n = 9) clusters. Using the VITEK MS system, 74 (74/90, 82.2%) isolates were identified as single species consistent with 16S rRNA sequence analysis, which was significantly better than the results obtained with VITEK 2 Compact (P < 0.01). Misidentifications by the Vitek 2 Compact and Vitek MS systems were mainly observed in the Clostridium XI (n = 8)and B. fragilis clusters (n = 9). VITEK MS identified anaerobic bacteria even after they had been exposed to oxygen for a week. Identification by the Vitek MS system was more consistent with 16S rRNA sequence analysis than identification by Vitek 2 Compact. Continuous expansion of the VITEK MS database with rare described anaerobic species is warranted to improve both the efficiency and accuracy of VITEK MS identification in routine diagnostic microbiology.  相似文献   

17.
《Gene》1996,173(1):53-58
The movement of bacteria through groundwater is a poorly understood process. Factors such as soil porosity and mineralogy, heterogeneity of soil particle size, and response of the bacteria to their environment contribute to the pattern of bacterial flow. The identification of transported bacteria is often a limiting factor in both laboratory and field transport experiments. Two bacterial strains were modified for use in bacterial transport experiments: a strain of Escherichia coli harboring the pGFP plasmid and a strain of Pseudomonas putida modified with a Tn5 derivative, Tn5GFP1. The Tn5GFP1 transposon incorporates the gene (gfp) encoding green fluorescent protein (GFP) and can be used to mutagenize Gram- bacteria. Fluorescent colonies were suspended in phosphate-buffered saline (PBS) at a concentration of approx. 109 bacteria/ml. A 10-cm glass column packed with quartz sand (diameter range 177–250 μm) was equilibrated with PBS prior to the forced flow introduction of the bacteria. Collected fractions were analyzed and the bacteria quantitated using a fluorescence spectrometer. Results demonstrate that the bacteria can be accurately tracked using their fluorescence, and that the intensity of the signal can be used to determine a C/Co ratio for the transported bacteria. The data show a rapid breakthrough of the bacteria followed by a characteristic curve pattern. A lower limit of detection of 105 cells was estimated based on these experiments. The Tn5GFP1 transposon should become a valuable tool for labeling bacteria.  相似文献   

18.
The aim of this work was to assess the antimicrobial efficacy on Pseudomonas aeruginosa of nanomicelles loaded with curcumin (CUR) alone and activated by blue laser light in an antimicrobial photodynamic therapy (APDT) approach. First, free CUR in liquid suspension and loaded in three amphiphilic nanomicelles (CUR-DAPMA, CUR-SPD and CUR-SPM) were tested both on bacteria and keratinocytes. While free CUR exerted limited efficacy showing moderate cytotoxicity, a strong inhibition of bacterial growth was obtained using all three nanosystems without toxicity on eukaryotic cells. CUR-SPM emerged as the most effective, and was therefore employed in APDT experiments. Among the three sublethal blue laser (λ 445 nm) protocols tested, the ones characterized by a fluence of 18 and 30 J/cm2 further decreased the antimicrobial concentration to 50 nM. The combination of blue laser APDT with CUR-SPM nanomicelles results in an effective synergistic activity that represents a promising novel therapeutic approach on resistant species.  相似文献   

19.
The metal-forming industries require the use of greases to lubricate metal surfaces during manufacturing operations, and the residues of these lubricants must be removed prior to finishing processes to protect and improve the appearance of the final product. An aqueous, biological metal-cleaning process operating under mild conditions (pH 9, 42°C) eliminates the use of environmentally unfriendly cleaning materials such as chlorinated solvents by employing microorganisms to degrade greases and oils naturally. This process was characterized in terms of initial degradation rates of a representative metal lubricant and by phylogenetic identification of the active bacteria. The metal lubricant in a surfactant solution was degraded by a bacterial consortium, and its concentration was determined by a novel gas chromatography assay. The maximum degradation rate Vmax and the apparent Km were obtained as 45 mg/(day mg protein) and 24 g/l on cellular basis, and 4.6 g/(day l) and 33 g/l on a volumetric basis, respectively. Mineralization of the metal lubricant was shown by analyzing the evolved CO2 and Cl, and the bacterial consortium utilized the metal lubricant as a sole carbon and energy source (=0.05±0.01 h–1 at 0.5 vol% lubricant concentration). The active bacteria in the biological metal-cleaning process were identified as Bacillus licheniformis for the higher lubricant concentrations (3, 5, and 7.5 vol%), Bacillus cereus at 1 vol%, and Pseudomonas aeruginosa, Rhizobiaceae strain M100, and Achromobacter sp. LMG 5431 at 0.3 vol%.  相似文献   

20.
Molecular based differentiation of various bacterial species is important in phylogenetic studies, diagnostics and epidemiological surveillance, particularly where unusual phenotype makes the classical phenotypic identification of bacteria difficult. Molecular approach based on the sequence of 16S ribosomal RNA gene analysis can achieve fast and reliable identification of bacteria. High resolution melting (HRM) curve analysis has been developed as an attractive novel technique for DNA sequence discrimination but it’s application for bacteria differentiation has not been well studied yet. We have developed HRM assay for differentiation of sixteen pathogenic or opportunistic bacterial species. Amplified partial 16S ribosomal RNA gene region between 968 and 1401 positions (E. coli reference numbering) was subsequently used in high resolution melting curve analysis of PCR products for bacterial species differentiation. Sixteen bacterial species were simultaneously discerned by difference plot of normalized and temperatures shifted melting curves, without need for spiking of DNA, hetero-duplexing experiments or application of several primer pairs. High resolution melting curve analysis of duplex DNA is simple, fast and reliable tool for bacterial species differentiation and may efficiently complement phenotypic identification of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号