共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed. 相似文献
3.
Growing concerns of environmental pollution and fossil resource shortage are major driving forces for bio‐based production of chemicals traditionally from petrochemical industry. Dicarboxylic acids (DCAs) are important platform chemicals with large market and wide applications, and here the recent advances in bio‐based production of straight‐chain DCAs longer than C4 from biological approaches, especially by synthetic biology, are reviewed. A couple of pathways were recently designed and demonstrated for producing DCAs, even those ranging from C5 to C15, by employing respective starting units, extending units, and appropriate enzymes. Furthermore, in order to achieve higher production of DCAs, enormous efforts were made in engineering microbial hosts that harbored the biosynthetic pathways and in improving properties of biocatalytic elements to enhance metabolic fluxes toward target DCAs. Here we summarize and discuss the current advantages and limitations of related pathways, and also provide perspectives on synthetic pathway design and optimization for hyper‐production of DCAs. 相似文献
4.
5.
6.
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole. 相似文献
7.
Summary. Among the amino acids produced by plants cysteine plays a special role as a mediator between assimilatory sulfate reduction
and provision of reduced sulfur for cell metabolism. Part of this characteristic feature is the presence of cysteine synthesis
in plastids, mitochondria and cytosol. Plants are the major source of reduced sulfur for human and animal nutrition. Cysteine
biosynthesis deserves special attention, since reduced sulfur is channelled from cysteine into many sulfur-containing compounds
in food and feed. Recent investigations are reviewed that focus on structure and regulation of cysteine synthesis in the model
plant Arabidopsis thaliana. These data indicate that cysteine synthesis is not just an intermediate reaction step but that it is part of a regulatory
network that mediates between inorganic sulfur supply and the demand for reduced sulfur during plant growth and in response
to environmental changes.
Received December 3, 2001 Accepted December 21, 2001 相似文献
8.
游离脂肪酸作为一种重要的平台化合物,其衍生产品被广泛应用到能源、化学工业中。作为更加可持续、绿色的生产策略,利用工程微生物合成游离脂肪酸是以石油基和动植物为原料生产脂肪酸类产品的重要补充。大肠杆菌作为经典的模式微生物,通过对其进行代谢工程改造,脂肪酸的积累已经从痕量提高到了约9g/L,展示了其作为脂肪酸合成菌株的巨大应用潜力。随着合成生物学技术的涌现,“感应-调控器”、体外重构、β氧化逆循环、异源合成途径的整合等思路的引入极大地加快了工程大肠杆菌脂肪酸合成的进化速率,并赋予大肠杆菌合成多种脂肪酸产品的能力。对近年来通过代谢工程和合成生物学手段改造大肠杆菌合成游离脂肪酸的研究进展进行综述,对其发展前景进行展望。 相似文献
9.
10.
The structural diversity of lipids underpins the biophysical properties of cellular membranes, which vary across all scales of biological organization. Because lipid composition results from complex metabolic and transport pathways, its experimental control has been a major goal of mechanistic membrane biology. Here, we argue that in the wake of synthetic biology, similar metabolic engineering strategies can be applied to control the composition, physicochemical properties, and function of cell membranes. In one emerging area, titratable expression platforms allow for specific and genome-wide alterations in lipid biosynthetic genes, providing analog control over lipidome stoichiometry in membranes. Simultaneously, heterologous expression of biosynthetic genes and pathways has allowed for gain-of-function experiments with diverse lipids in non-native systems. Finally, we highlight future directions for tool development, including recently discovered lipid transport pathways to intracellular lipid pools. Further tool development providing synthetic control of membrane properties can allow biologists to untangle membrane lipid structure-associated functions. 相似文献
11.
The unbalanced distribution of carbon flux in microbial cell factories can lead to inefficient production and poor cell growth. Uncoupling cell growth and chemical synthesis can therefore improve microbial cell factory efficiency. Such uncoupling, which requires precise manipulation of carbon fluxes, can be achieved by up-regulating or down-regulating the expression of enzymes of various pathways. In this study, a dynamic turn-off switch (dTFS) and a dynamic turn-on switch (dTNS) were constructed using growth phase-dependent promoters and degrons. By combining the dTFS and dTNS, a bifunctional molecular switch that could orthogonally regulate two target proteins was introduced. This bifunctional molecular switch was used to uncouple cell growth from shikimic acid and D-glucaric acid synthesis, resulting in the production of 14.33 g/L shikimic acid and the highest reported productivity of D-glucaric acid (0.0325 g/L/h) in Escherichia coli MG1655. This proved that the bifunctional molecular switch could rewire carbon fluxes by controlling target protein abundance. 相似文献
12.
Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. 相似文献
13.
Synthetic Escherichia coli consortia engineered for syntrophy demonstrated enhanced biomass productivity relative to monocultures. Binary consortia were designed to mimic a ubiquitous, naturally occurring ecological template of primary productivity supported by secondary consumption. The synthetic consortia replicated this evolution-proven strategy by combining a glucose positive E. coli strain, which served as the system's primary producer, with a glucose negative E. coli strain which consumed metabolic byproducts from the primary producer. The engineered consortia utilized strategic division of labor to simultaneously optimize multiple tasks enhancing overall culture performance. Consortial interactions resulted in the emergent property of enhanced system biomass productivity which was demonstrated with three distinct culturing systems: batch, chemostat and biofilm growth. Glucose-based biomass productivity increased by ∼15, 20 and 50% compared to appropriate monoculture controls for these three culturing systems, respectively. Interestingly, the consortial interactions also produced biofilms with predictable, self-assembling, laminated microstructures. This study establishes a metabolic engineering paradigm which can be easily adapted to existing E. coli based bioprocesses to improve productivity based on a robust ecological theme. 相似文献
14.
15.
Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production. 相似文献
16.
Wesley D. Marner II Dr. 《Biotechnology journal》2009,4(10):1406-1419
Synthetic biology can be defined as the “repurposing and redesign of biological systems for novel purposes or applications, ” and the field lies at the interface of several biological research areas. This broad definition can be taken to include a variety of investigative endeavors, and successful design of new biological paradigms requires integration of many scientific disciplines including (but not limited to) protein engineering, metabolic engineering, genomics, structural biology, chemical biology, systems biology, and bioinformatics. This review focuses on recent applications of synthetic biology principles in three areas: (i) the construction of artificial biomolecules and biomaterials; (ii) the synthesis of both fine and bulk chemicals (including biofuels); and (iii) the construction of “smart” biological systems that respond to the surrounding environment. 相似文献
17.
Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have evolved such that they are intrinsically robust in their network structure. In this article, we presented Ensemble Modeling for Robustness Analysis (EMRA), which combines a continuation method with the Ensemble Modeling approach, for investigating the robustness issue of non-native pathways. EMRA investigates a large ensemble of reference models with different parameters, and determines the effects of parameter drifting until a bifurcation point, beyond which a stable steady state disappears and system failure occurs. A pathway is considered to have high bifurcational robustness if the probability of system failure is low in the ensemble. To demonstrate the utility of EMRA, we investigate the bifurcational robustness of two synthetic central metabolic pathways that achieve carbon conservation: non-oxidative glycolysis and reverse glyoxylate cycle. With EMRA, we determined the probability of system failure of each design and demonstrated that alternative designs of these pathways indeed display varying degrees of bifurcational robustness. Furthermore, we demonstrated that target selection for flux improvement should consider the trade-offs between robustness and performance. 相似文献
18.
Synthetic biology provides a significant platform in creating novel pathways/organisms for producing useful compounds, while it remains a challenge to enhance the production efficiency. Recently we constructed a recombinant Escherichia coli for glutarate production using a synthetic α-ketoacid reduction pathway, in which α-ketoglutarate is reduced to 2-hydroxyglutarate then converted to glutarate. However, the production titer was low, which may be due to 1) oxygen-sensitive nature of 2-hydroxyglutaryl-CoA dehydratase (HgdABC) and 2) limited cell growth in anaerobic cultivation. Therefore, we developed an aerobic-anaerobic two-stage strategy by growing more cells aerobically, then shifting to anaerobic cultivation to ensure the functional HgdABC for glutarate biosynthesis. The two-stage cultivation resulted in higher production of glutarate and other two C5 dicarboxylic acids – glutaconate and 2-hydroxylglutarate than the original anaerobic process. Furthermore, we used an anaerobically-inducible nar promoter to improve the hgdABC expression responding to aerobic-anaerobic shift. Finally, the glutarate, glutaconate and 2-hydroxyglutarate titer was increased about 2, 5 and 3 times, reaching 11.6, 108.8 and 399.5 mg/L, respectively. The work demonstrated an effective strategy for ameliorating α-ketoacid reduction pathway to produce C5 dicarboxylic acids, as well as the potential of integration of bioprocess and metabolic engineering for enhancing chemicals production by an engineered microorganism. 相似文献
19.
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides. 相似文献
20.
Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. 相似文献