首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundSymmetry and flatness are two quantities which should be evaluated in the commissioning and quality control of an electron beam in electron beam radiotherapy. The aim of this study is to compare symmetry and flatness obtained using three different dosimeters for various small and large fields in electron beam radiotherapy with linac.Materials and methodsBeam profile measurements were performed in a PTW water phantom for 10, 15 and 18 MeV electron beams of an Elekta Precise linac for small and large beams (1.5 × 1.5 cm2 to 20 × 20 cm2 field sizes). A Diode E detector and Semiflex-3D and Advanced Markus ionization chambers were used for dosimetry.ResultsBased on the obtained results, there are minor differences between the responses from different dosimeters (Diode E detector and Semiflex-3D and Advanced Markus ionization chambers) in measurement of symmetry and flatness for the electron beams. The symmetry and flatness values increase with increasing field size and electron beam energy for small and large field sizes, while the increases are minor in some cases.ConclusionsThe results indicate that the differences between the symmetry and flatness values obtained from the three dosimeter types are not practically important.  相似文献   

2.
PurposeTo study the impact of shielding elements in the proximity of Intra-Operative Radiation Therapy (IORT) irradiation fields, and to generate graphical and quantitative information to assist radiation oncologists in the design of optimal shielding during pelvic and abdominal IORT.MethodAn IORT system was modeled with BEAMnrc and EGS++ Monte Carlo codes. The model was validated in reference conditions by gamma index analysis against an experimental data set of different beam energies, applicator diameters, and bevel angles. The reliability of the IORT model was further tested considering shielding layers inserted in the radiation beam. Further simulations were performed introducing a bone-like layer embedded in the water phantom. The dose distributions were calculated as 3D dose maps.ResultsThe analysis of the resulting 2D dose maps parallel to the clinical axis shows that the bevel angle of the applicator and its position relative to the shielding have a major influence on the dose distribution. When insufficient shielding is used, a hotspot nearby the shield appears near the surface. At greater depths, lateral scatter limits the dose reduction attainable with shielding, although the presence of bone-like structures in the phantom reduces the impact of this effect.ConclusionsDose distributions in shielded IORT procedures are affected by distinct contributions when considering the regions near the shielding and deeper in tissue: insufficient shielding may lead to residual dose and hotspots, and the scattering effects may enlarge the beam in depth. These effects must be carefully considered when planning an IORT treatment with shielding.  相似文献   

3.
BackgroundThe availability of linear accelerators (linac) for research purposes is often limited and therefore alternative radiation sources are needed to conduct radiobiological research. The National Centre for Radiation Research in Poland recently developed an intraoperative mobile linac that enables electron irradiation at energies ranging from 4 to 12 MeV and dose rates of 5 or 10 Gy/min. The present study was conducted to evaluate the electron beam parameters of this intraoperative linac and to verify the set-up to evaluate out-of-field doses in a water phantom, which were determined through dosimetric and biological response measurements.Materials and methodsThe distribution of radiation doses along and across the radiation beam were measured in a water phantom using a semiconductor detector and absolute doses using an ionisation chamber. Two luminal breast cancer cell lines (T-47D and HER2 positive SK-BR-3) were placed in the phantom to study radiation response at doses ranging from 2 to 10 Gy. Cell response was measured by clonogenic assays.Results and ConclusionThe electron beam properties, including depth doses and profiles, were within expected range for the stated energies. These results confirm the viability of this device and set-up as a source of megavoltage electrons to evaluate the radiobiological response of tumour cells.  相似文献   

4.
PurposeTo assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control.MethodsWe retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated.ResultsAll phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications.ConclusionsSPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised.  相似文献   

5.
PurposeIn IOERT breast treatments, a shielding disk is frequently used to protect the underlying healthy structures. The disk is usually composed of two materials, a low-Z material intended to be oriented towards the beam and a high-Z material. As tissues are repositioned around the shield before treatment, the disk is no longer visible and its correct alignment with respect to the beam is guaranteed. This paper studies the dosimetric characteristics of four possible clinical positioning scenarios of the shielding disk. A new alignment method for the shielding disk in the beam is introduced. Finally, it suggests a new design for the shielding disk.MethodsAs the first step, the IOERT machine “Mobetron 1000” was modeled by using Monte Carlo simulation, tuning the MC model until an excellent match with the measured PDDs and profiles was achieved. Four possible shielding disk positioning scenarios were considered, determining the dosimetric impact. Furthermore, in our center, to prevent beam misalignment, we have developed a shielding disk equipped with guiding rods. Having ascertained a correct alignment between the disk and the beam, we can propose a new internal design of the shielding disk that can improve the dose distribution with a better coverage of the treated area.ResultsAll MC simulations were performed with a 12 MeV beam, the maximum energy of Mobetron 1000 and a 5.5 cm diameter flat tip applicator, this applicator being the most clinically used. The simulations were compared with measurements performed in a water phantom and showed good results within 2.2% of root mean square difference (RMSD). The misplacement positions of the shielding disk have dosimetric impacts in the treatment volume and a small translation could have a significant influence on healthy tissues. The D-scenario is the worst which could happens when the shielding disk is flipped upside down, giving up to 144% dose instead of 90% at the surface of the Pb/Al shielding disk. A new shielding design used, together with our alignment tool, is able to give a more homogeneous dose in the target area.ConclusionsThe accuracy of shielding disk position can still be problematic in IOERT dosimetry. Any method that can ascertain the good alignment between the shielding disk and the beam is beneficial for the dose distribution and is a prerequisite for an optimized shield internal design that could improve the coverage of the treated area and the protection of healthy tissues.  相似文献   

6.
Irradiating a tumor bed with boost dose after whole breast irradiation helps reducing the probability of local recurrence. However, the success of electron beam treatment with a small area aiming to cover a superficial lesion is a dual challenge as it requires an adequate dosimetry beside a double check for dose coverage with an estimation of various combined uncertainty of tumor location and losing lateral electron equilibrium within small field dimensions.Aim of workthis work aims to measure the electron beam fluence within different field dimensions and the deviation from measurement performed in standard square electron applicator beam flatness and symmetry, then to calculate the average range of the correction factor required to overcome the loss of lateral electron equilibrium.Material and methodthe electron beam used in this work generated from the linear accelerator model ELEKTA Precise and dosimetry system used were a pair of PTW Pin Point ion chambers for electron beam dosimetry at standard conditions and assessment of beam quality at a reference depth of measurement, with an automatic water phantom, then a Roos ion chamber was used for absolute dose measurement, and PTW 2Darray to investigate the beam fluence of four applicators 6, 10, 14 and 20 cm2 and 4 rectangular cutouts 6 × 14, 8 × 14, 6 × 17 and 8 × 17 cm2, the second part was clinical application which was performed in a precise treatment planning system and examined boost dose after whole breast irradiation.Resultsrevealed that lower energy (6MeV and 8MeV) showed the loss of lateral electron equilibrium and deviation from measurements of a standard applicator more than the high energy (15 MeV) which indicated that the treatment of superficial dose with 6MeV required higher monitor unit to allow for the loss of lateral electron equilibrium and higher margin as well.  相似文献   

7.
AimThis work is focused on the Monte Carlo microdosimetric calculations taking into account the influence of the AuNPs’ shape, size and mass concentration on the radiation dose enhancement for the high-energy 6 MV and 18 MV X-ray therapeutic beams from a medical linac.BackgroundDue to a high atomic number and the photoelectric effect, gold nanoparticles can significantly enhance doses of ionizing radiation. However, this enhancement depends upon several parameters, such as, inter alia, nanoparticles’ shape etc.MethodThe simulated system was composed of the therapeutic beam, a water phantom with the target volume (with and without AuNPs) located at the depth of the maximum dose, i.e. at 1.5 cm for the 6 MV beam and at 3.5 cm for the 18 MV one. In the study the GEANT4 code was used because it makes it possible to get a very short step of simulation which is required in case of simulating the radiation interactions with nanostructures.ResultsThe dependence between the dose increase and the mass concentration of gold was determined and described by a simple mathematical formula for three different shapes of gold nanoparticles — two nanorods of different sizes and a flat 2D structure. The dose increase with the saturation occurring with the increasing mass concentration of gold was observed.ConclusionsIt was found that relatively large cylindrical gold nanoparticles can limit the increase of the dose absorbed in the target volume much more than the large 2D gold nanostructure.  相似文献   

8.
PurposeTo develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP).Methods and materialsA QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA.ResultsOutput constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity.ConclusionsThe results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests.  相似文献   

9.
PurposeTo evaluate the flat-panel detector quenching effect and clinical usability of a flat-panel based compact QA device for PBS daily constancy measurements.Materials & MethodThe QA device, named Sphinx Compact, is composed of a 20x20 cm2 flat-panel imager mounted on a portable frame with removable plastic modules for constancy checks of proton energy (100 MeV, 150 MeV, 200 MeV), Spread-Out-Bragg-Peak (SOBP) profile, and machine output. The potential quenching effect of the flat-panel detector was evaluated. Daily PBS QA tests of X-ray/proton isocenter coincidence, the constancy of proton spot position and sigma as well as the energy of pristine proton beam, and the flatness of SOBP proton beam through the 'transformed' profile were performed and analyzed. Furthermore, the sensitivity of detecting energy changes of pristine proton beam was also evaluated.ResultsThe quenching effect was observed at depths near the pristine peak regions. The flat-panel measured range of the distal 80% is within 0.9 mm to the defined ranges of the delivered proton beams. X-ray/proton isocenter coincidence tests demonstrated maximum mismatch of 0.3 mm between the two isocenters. The device can detect 0.1 mm change of spot position and 0.1 MeV energy changes of pristine proton beams. The measured transformed SOBP beam profile through the wedge module rendered as flat.ConclusionsEven though the flat-panel detector exhibited quenching effect at the Bragg peak region, the proton range can still be accurately measured. The device can fulfill the requirements of the daily QA tests recommended by the AAPM TG224 Report.  相似文献   

10.
AimThe investigation of the irradiation time calculation accuracy of the GGPB algorithm used for IORT.BackgroundConventionally, breast conserving therapy consists of breast conserving surgery followed by postoperative whole breast irradiation and boost. The use of intraoperative radiotherapy (IORT) enables the boost to be delivered already during the surgery. In this case, the treatment dose for IORT can be calculated by use of General Gaussian Pencil Beam (GGPB) algorithm, which is implemented in TPS Eclipse.Materials and methodsPDDs and OFs for electron beams from Mobetron and all available applicators were measured in order to configure the GGPB algorithm. Afterwards, the irradiation times for the prescribed dose of 3 Gy were calculated by means of it. The results of calculations were verified in the water phantom using the Marcus ionization chamber.ResultsThe results differed between energies. For 6 MeV the irradiation times calculated by the GGPB algorithm were correct, for the energy of 9 MeV they were too small and for the energy of 4 MeV they were too large for applicators with smaller diameters, while acceptable for the remaining ones.ConclusionThe GGPB algorithm can be used in intraoperative radiotherapy for energy and applicator sets for which no significant difference between the measured and the prescribed dose was obtained. For the rest of energy-applicator sets the configuration should be verified and possibly repeated.  相似文献   

11.
12.
PurposeThis work investigated effects of implementing the Delta4 Discover diode transmission detector into the clinical workflow.MethodsPDD and profile scans were completed with and without the Discover for a number of photon beam energies. Transmission factors were determined for all beam energies and included in Eclipse TPS to account for the attenuation of the Discover. A variety of IMRT plans were delivered to a Delta4 Phantom+ with and without the Discover to evaluate the Discover’s effects on IMRT QA. An imaging QA phantom was used to assess the detector’s effects on MV image quality. OSLDs placed on the Phantom+ were used to determine the detector’s effects on superficial dose.ResultsThe largest effect on PDDs after dmax was 0.5%. The largest change in beam profile symmetry and flatness was 0.2% and 0.1%, respectively. An average difference in gamma passing rates (2%/2 mm) of 0.2% was observed between plans that did not include the Discover in the measurement and calculation to plans that did include the Discover in the measurement and calculation. The Discover did not significantly change the MV image quality, and the largest observed increase in the relative superficial dose when the Discover was present was 1%.ConclusionsThe effects the Discover has on the linac beam were found to be minimal. The device can be implemented into the clinic without the need to alter the TPS beam modeling, other than accounting for the device’s attenuation. However, a careful workflow review to implement the Discover should be completed.  相似文献   

13.
IntroductionLow-kV IORT (Low kilovoltage intraoperative radiotherapy) using INTRABEAM machine and dedicated spherical applicators is a candidate modality for breast cancer treatment. The current study aims to quantify the RBE (relative biologic effectiveness) variations of emitted X-rays from the surface of different spherical applicators and bare probe through a hybrid Monte Carlo (MC) simulation approach.Materials and methodsA validated MC model of INTRABEAM machine and different applicator diameters, based on GEANT4 Toolkit, was employed for RBE evaluation. To doing so, scored X-ray energy spectra at the surface of each applicator diameter/bare probe were used to calculate the corresponding secondary electron energy spectra at various distances inside the water and breast tissue. Then, MCDS (Monte Carlo damage simulation) code was used to calculate the RBE values according to the calculated electron spectra.ResultsPresence of spherical applicators can increase the RBE of emitted X-rays from the bare probe by about 22.3%. In return, changing the applicator diameter has a minimal impact (about 3.2%) on RBE variation of emitted X-rays from each applicator surface. By increasing the distance from applicator surface, the RBE increments too, so that its value enhances by about 10% with moving from 2 to 10 mm distance. Calculated RBE values within the breast tissue were higher than those of water by about 4% maximum value.ConclusionBall section of spherical IORT applicators can affect the RBE value of the emitted X-rays from INTRABEAM machine. Increased RBE of breast tissue can reduce the prescribed dose for breast irradiation if INTRABEAM machine has been calibrated inside the water.  相似文献   

14.
PurposeTo evaluate the dosimetric accuracy of Pencil beam (PB), Anisotropic Analytical Algorithm (AAA) and Collapsed Cone Convolution Superposition (CCCS) in thoracic tumours for various IMRT techniques.MethodsStep-and-shoot Linac IMRT (IMRT), arc volumetric RapidArc (RA) and Helical Tomotherapy (HT) lung treatments for different clinical situations (mediastinum tumour, single metastasis and multiple metastases) were simulated and calculated with PB/AAA, AAA, CCCS, respectively. Delivery quality assurance plans were first verified in homogeneous media (Cheese phantom and ArcCHECK); then several low-density inhomogeneous phantoms were used: the Multiplug ArcCHECK, the commercial ArcCHECK slightly modified with a low density lung–shape insert and a custom-made slab heterogeneous phantom simulating the thorax region. Absolute doses and planar dose maps were checked to assess the agreement between measured and calculated dose distributions.ResultsIn total, data referred to 195 point dose measurements and 189 planar measurements were considered. Average point absolute deviations <3% were found for all the delivery techniques/dose algorithms. In small targets completely embedded in very low density media, deviations up to 7–10% and 4–5% were found for PB and AAA/CCCS respectively. Excellent results were found for planar measurements in ArcCHECK configurations, where ≥95% of points satisfy the 3%/3 mm acceptance criteria for all the algorithms.ConclusionsA satisfactory agreement (<2%) between planned and measured doses was generally found for CCCS and AAA, excepting the very critical situation of a small tumour completely embedded in air. A significant dose overestimation (from few to 5–7%) was confirmed for PB in complex inhomogeneous arrangements.  相似文献   

15.

A new phantom was designed for in vitro studies on cell lines in horizontal particle beams. The phantom enables simultaneous irradiation at multiple positions along the beam path. The main purpose of this study was the detailed dosimetric characterization of the phantom which consists of various heterogeneous structures. The dosimetric measurements described here were performed under non-reference conditions. The experiment involved a CT scan of the phantom, dose calculations performed with the treatment planning system (TPS) RayStation employing both the Pencil Beam (PB) and Monte Carlo (MC) algorithms, and proton beam delivery. Two treatment plans reflecting the typical target location for head and neck cancer and prostate cancer treatment were created. Absorbed dose to water and dose homogeneity were experimentally assessed within the phantom along the Bragg curve with ionization chambers (ICs) and EBT3 films. LETd distributions were obtained from the TPS. Measured depth dose distributions were in good agreement with the Monte Carlo-based TPS data. Absorbed dose calculated with the PB algorithm was 4% higher than the absorbed dose measured with ICs at the deepest measurement point along the spread-out Bragg peak. Results of experiments using melanoma (SKMel) cell line are also presented. The study suggested a pronounced correlation between the relative biological effectiveness (RBE) and LETd, where higher LETd leads to elevated cell death and cell inactivation. Obtained RBE values ranged from 1.4 to 1.8 at the survival level of 10% (RBE10). It is concluded that dosimetric characterization of a phantom before its use for RBE experiments is essential, since a high dosimetric accuracy contributes to reliable RBE data and allows for a clearer differentiation between physical and biological uncertainties.

  相似文献   

16.
This study compares Treatment Planning System (TPS) out of field dose calculation on a pacemaker (PMK) during external beam radiotherapy treatment. We consider four TPSs (Elekta-Monaco, Oncentra- Masterplan and two Philips-Pinnacle3) commissioned for two linacs (Elekta Sinergy and Varian Clinac) delivering two test beams (a highly modulated one and a square field) and two clinical breast plans. To calculate and measure dose to a PMK we built a Real Water3 phantom with a PMK embedded in it. Measures are performed with thermo-luminescent dosimeters and Mosfet dosimeters. We evaluate differences between TPS calculated values for the dose to the PMK (both point dose and dose-volume histogram parameters) when the PMK is positioned in the first 10 cm outside the radiation fields. TPS calculation accuracy is evaluated comparing such values with measures. Differences in TPS calculations are on average 3.5 cGy Gy-1 for the modulated beam, and always lower than 2 cGy Gy-1 for the square beam. TPS dose calculation depends mostly on the TPS algorithm and model rather than the linac commissioned. TPSs considered show different degrees of calculation accuracy. In the first 4 cm to the field edge three out of four TPSs are in good agreement with measurements in the square beam, but only one keeps the agreement in the modulated beam: the others show over and underestimations up to +20% −40%. The same accuracy is found considering a homogeneous phantom. Our results confirm what reported in previous studies and highlight the impact of TPS commissioning.  相似文献   

17.
High-energy electron treatment procedures in radiotherapy pose a potential iatrogenic cancer risk as well as a critical health risk to patients with cardiac implantable electronic devices due to the generation of secondary neutrons in the linac head, the treatment room, and the patient. It may be argued that the neutron production from photons is well characterized, but the same is not true for electrons. Therefore, to assess the risk involved in an electron treatment, one must determine the neutron flux spectrum generated by the treatment procedure. The neutron spectrum depends on the treatment parameters used and therefore it is crucial to study its dependence on these parameters. In this work, eight experiments were devised to analyze how eight electron treatment parameters impacted the neutron spectrum. The parameters we considered were the electron beam energy, location of measurement, cutout size, collimator size, applicator size, collimator angle, choice of treatment room, and the presence or absence of a solid water phantom. For each experiment, we used a Nested Neutron Spectrometer™ (NNS) to measure the neutron flux spectra for multiple settings of the treatment parameter of interest. The resulting spectra were plotted and compared. We found that the electron beam energy and the location of measurement had the most impact on the neutron flux spectra, while the other parameters had a smaller or insignificant impact. This report may serve as a reference tool for medical physicists to help estimate the risk associated with a particular high-energy electron treatment procedure.  相似文献   

18.
PurposeTo assess out-of-field doses in radiotherapy treatments of paediatric patients, using Monte Carlo methods to implement a new model of the linear accelerator validated against measurements and developing a voxelized anthropomorphic paediatric phantom.MethodsCT images of a physical anthropomorphic paediatric phantom were acquired and a dosimetric planning using a TPS was obtained. The CT images were used to perform the voxelization of the physical phantom using the ImageJ software and later implemented in MCNP. In order to validate the Monte Carlo model, dose measurements of the 6 MV beam and Linac with 120 MLC were made in a clinical setting, using ionization chambers and a water phantom. Afterwards TLD measurements in the physical anthropomorphic phantom were performed in order to assess the out-of-field doses in the eyes, thyroid, c-spine, heart and lungs.ResultsThe Monte Carlo model was validated for in-field and out-of-field doses with average relative differences below 3%. The average relative differences between TLD measurements and Monte Carlo is 14,3% whilst the average relative differences between TLD and TPS is 55,8%. Moreover, organs up to 22.5 cm from PTV center show TLD and MCNP6 relative differences and TLD and TPS relative differences up to 21.2% and 92.0%, respectively.ConclusionsOur study provides a novel model that could be used in clinical research, namely in dose evaluation outside the treatment fields. This is particularly relevant, especially in pediatric patients, for studying new radiotherapy treatment techniques, since it can be used to estimate the development of secondary tumours.  相似文献   

19.
AimIn this study, we investigated initial electron parameters of Siemens Artiste Linac with 6 MV photon beam using the Monte Carlo method.BackgroundIt is essential to define all the characteristics of initial electrons hitting the target, i.e. mean energy and full width of half maximum (FWHM) of the spatial distribution intensity, which is needed to run Monte Carlo simulations. The Monte Carlo is the most accurate method for simulation of radiotherapy treatments.Materials and methodsLinac head geometry was modeled using the BEAMnrc code. The phase space files were used as input file to DOSXYZnrc simulation to determine the dose distribution in a water phantom. We obtained percent depth dose curves and the lateral dose profile. All the results were obtained at 100 cm of SSD and for a 10 × 10 cm2 field.ResultsWe concluded that there existed a good conformity between Monte Carlo simulation and measurement data when we used electron mean energy of 6.3 MeV and 0.30 cm FWHM value as initial parameters. We observed that FWHM values had very little effect on PDD and we found that the electron mean energy and FWHM values affected the lateral dose profile. However, these effects are between tolerance values.ConclusionsThe initial parameters especially depend on components of a linac head. The phase space file which was obtained from Monte Carlo Simulation for a linac can be used as calculation of scattering, MLC leakage, to compare dose distribution on patients and in various studies.  相似文献   

20.
PurposeTo characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator.MethodsThe dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.).The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors.ResultsA good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under 60Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes.ConclusionsThe microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号