首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Surface-enhanced infrared absorption (SEIRA) difference spectroscopy can probe reactions in a protein monolayer tethered to a nanostructured gold surface. SEIRA studies of membrane proteins, however, remain challenging due to sample stability, effects of the metal surface on function, and the need for a membrane-mimicking environment. Here we demonstrate and characterize a model system for membrane receptor investigations using SEIRA spectroscopy. The system employs nanoscale apolipoprotein bound bilayer (NABB) particles, similar to discoidal high-density lipoprotein particles, as soluble carriers for the G-protein-coupled receptor rhodopsin. The His-tag of the engineered apolipoprotein allows for selective binding of the NABBs to a Ni-NTA modified surface, while the lipid environment of the particle ensures stability and protection of the embedded receptor. Using SEIRA spectroscopy, we followed specific binding of rhodopsin-loaded NABB particles to the surface and formation of a membrane protein monolayer. Functionality of the photoreceptor in the immobilized NABBs was probed by SEIRA difference spectroscopy confirming protein conformational changes associated with photoactivation. Orientation of the immobilized NABB particles was assessed by comparing SEIRA data with polarized attenuated total reflection-Fourier-transform infrared spectroscopy. Thus, SEIRA difference spectroscopy supported by the NABB technology provides a promising approach for further functional studies of transmembrane receptors.  相似文献   

3.
Using surface-enhanced infrared absorption (SEIRA) spectroscopy of dry films of colloidal gold (CG) bioconjugates with protein A, it is shown that certain characteristic bands of the protein (e.g., amide I, amide II and some other vibration modes) are essentially affected by the metal surface. Thus, the method may be used for controlling the quality of such bioconjugates. Moreover, it is demonstrated that the biospecific reaction of protein A attached to CG particles with human immunoglobulin G (IgG) results in further essential changes in SEIRA spectra, providing a means for an easy and rapid IR spectroscopic detection of biospecific immunochemical interactions (i.e., spectroimmunochemistry). The results obtained can form a basis for developing test systems for detecting various biospecific interactions.  相似文献   

4.
We demonstrate the synthesis and characterization of core–shell nanowires consisting of a non-centrosymmetric KNbO3 core and a gold shell. This type of nanostructure combines the nonlinear optical properties of the core and the plasmonic resonance of the shell in the near infrared spectral range. We report successful spectroscopic measurements on coated single wires to characterize the resonant behavior of the gold shell. We present a theoretical model based on the electrostatic approximation to estimate the enhancement of second-harmonic generation in a nanowire due to the shell. It suggests a possible enhancement factor of up to 4,000 for a system with a nanoshell of 16 nm thickness at a wavelength of 900 nm.  相似文献   

5.
A substantial broadband increase in the external quantum efficiency (EQE) of thin‐film organic photovoltaic (OPV) devices using near‐field coupling to surface plasmons is reported, significantly enhancing absorption at surface plasmon resonance (SPR). The devices tested consist of an archetypal boron subpthalocyanine chloride/fullerene (SubPc/C60) donor/acceptor heterojunction embedded within a planar semitransparent metallic nanocavity. The absorption and EQE are modeled in detail and probed by attenuated total internal reflection spectroscopy with excellent agreement. At SPR, the EQE can be enhanced fourfold relative to normal incidence, due to simulated ninefold enhancement in active layer absorption efficiency. The response at SPR is thickness‐independent, down to a few monolayers, suggesting the ability to excite monolayer‐scale junctions with an EQE of ≈6% and a 16‐fold absorption enhancement over normal incidence. These results potentially impact the future design of plasmonically enhanced thin‐film photovoltaics and photodetectors and enable the direct analysis of the dynamics of photocurrent production at OPV heterojunctions.  相似文献   

6.
The spectral fusion by Raman spectroscopy and Fourier infrared spectroscopy combined with pattern recognition algorithms is utilized to diagnose thyroid dysfunction serum, and finds the spectral segment with the highest sensitivity to further advance diagnosis speed. Compared with the single infrared spectroscopy or Raman spectroscopy, the proposal can improve the detection accuracy, and can obtain more spectral features, indicating greater differences between thyroid dysfunction and normal serum samples. For discriminating different samples, principal component analysis (PCA) was first used for feature extraction to reduce the dimension of high‐dimension spectral data and spectral fusion. Then, support vector machine (SVM), back propagation neural network, extreme learning machine and learning vector quantization algorithms were employed to establish the discriminant diagnostic models. The accuracy of spectral fusion of the best analytical model PCA‐SVM, single Raman spectral accuracy and single infrared spectral accuracy is 83.48%, 78.26% and 80%, respectively. The accuracy of spectral fusion is higher than the accuracy of single spectrum in five classifiers. And the diagnostic accuracy of spectral fusion in the range of 2000 to 2500 cm?1 is 81.74%, which greatly improves the sample measure speed and data analysis speed than analysis of full spectra. The results from our study demonstrate that the serum spectral fusion technique combined with multivariate statistical methods have great potential for the screening of thyroid dysfunction.  相似文献   

7.
In this article, we report for the first time, the detection of circulating miRNA as a breast cancer biomarker in patient sera using surface plasmon resonance imaging biosensor. The advantage of this approach lies in the rapid, label-free and sensitive detection. The sensor excites plasmonic resonance on the gold sensor surface and specific DNA-miRNA molecular bindings elucidate responses in the plasmonic resonance image. Experiments of detecting synthetic miRNA molecules (miR-1249) were performed and the sensor resolution was found to be 63.5 nM. The sensor was further applied to screen 17 patient serum samples from National Cancer Centre Singapore and Tan Tock Seng Hospital. Sensor intensity response was found to differ by 20% between malignant and benign cases and thus forms, a potential and an important metric in distinguishing benignity and malignancy.  相似文献   

8.
Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1Hα and 13C′ chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Amino acid side chains play fundamental roles in stabilising protein structures and in catalysing enzymatic reactions. These fields are increasingly investigated by infrared spectroscopy at the molecular level. To help the interpretation of the spectra, a review of the infrared absorption of amino acid side chains in H2O and 2H2O is given. The spectral region of 2600–900 cm−1 is covered.  相似文献   

10.
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
Highlights
  • •In-depth proteomes of 4 SARS-CoV-2 cell line models (Vero E6, Calu-3, Caco-2, A549).
  • •Proteomic evidence for thousands of Chlorocebus sabaeus proteins.
  • •Proteomic response of Vero E6 cells to SARS-CoV-2 infection.
  • •Synthetic peptides, spectral libraries, and targeted assays for SARS-CoV-2 proteins.
  相似文献   

11.
A polymer nanostructured Fabry–Perot interferometer (FPI) based biosensor is reported. Different from a conventional FPI, the nanostructured FPI has a layer of Au-coated nanopores inside its cavity. The Au-coated nanostructure layer offers significant enhancement of optical transducing signals due to the localized surface plasmon resonance effect and also due to the significantly increased sensing surface area, which is up to at least two orders of magnitude larger than that of a conventional FPI-based biosensor. Using this technical platform, the immobilization of captures proteins (protein A) on the nanostructure layer and their binding with immunoglobulin G (IgG) has been monitored in real time, resulting in the shift of the interference fringes of the optical transducing signals. Current results show that the limit-of-detection of the biosensor should be lower than 10 pg/mL for IgG-protein A binding.  相似文献   

12.
Summary The ability of modern biotechnology to produce new or modified proteins has outpaced current understanding of the relationship between protein structure and protein function. Resolution-enhanced infrared spectroscopy and Raman spectroscopy are excellent non-destructive techniques for investigating the secondary structure of proteins under a wide variety of conditions. The techniques yield rapid, reliable estimates of the proportion of helical structure, -strands, and turns of proteins in solution, as gels, or as solids. These methodologies can also detect subtle variations in protein conformation that frequently occur upon change of the biomolecular environment. In particular, it is possible to study structural changes which arise from alterations in pH, ionic strength, nature of solvent, and from interactions with other molecules or ions, such as another protein or Ca2+ ions. The first part of this paper will briefly review various important aspects of the techniques. The subsequent part describes application to structural problems of casein and other food proteins.  相似文献   

13.
Nie B  Stutzman J  Xie A 《Biophysical journal》2005,88(4):2833-2847
Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. We report an infrared vibrational spectral marker for probing the hydrogen-bond number for buried, protonated Asp or Glu residues in proteins. Ab initio computational studies were performed on hydrogen-bonding interactions of a COOH group with a variety of side-chain model compounds of polar and charged amino acids in vacuum using density function theory. For hydrogen-bonding interactions with polar side-chain groups, our results show a strong correlation between the C=O stretching frequency and the hydrogen bond number of a COOH group: approximately 1759-1776 cm(-1) for zero, approximately 1733-1749 cm(-1) for one, and 1703-1710 cm(-1) for two hydrogen bonds. Experimental evidence for this correlation will be discussed. In addition, we show an approximate linear correlation between the C=O stretching frequency and the hydrogen-bond strength. We propose that a two-dimensional infrared spectroscopy, C=O stretching versus O-H stretching, may be employed to identify the specific type of hydrogen-bonding interaction. This vibrational spectral marker for hydrogen-bonding interaction is expected to enhance the power of time-resolved Fourier transform infrared spectroscopy for structural characterization of functionally important intermediates of proteins.  相似文献   

14.
Multiphoton microscopy using short-wave infrared (SWIR) radiation offers nondestructive and high-resolution imaging through tissue. Two-photon fluorescence (TPF), for example, is commonly employed to increase the penetration depth and spatial resolution of SWIR imaging, but the broad spectral peaks limit its multiplexing capabilities. Hyper-Raman scattering, the vibrational analog of TPF, yields spectral features on the order of 20 cm?1 and reporter-functionalized noble metal nanoparticles (NPs) provide a platform for both hyper-Raman signal enhancement and selective targeting in biological media. Herein we report the first tissue imaging study employing surface-enhanced resonance hyper-Raman scattering (SERHRS), the two-photon analog of surface-enhanced resonance Raman scattering. Specifically, we employ multicore gold-silica NPs (Au@SiO2 NPs) functionalized with a near infrared-resonant cyanine dye, 3,3′-diethylthiatricarbocyanine iodide as a SERHRS reporter. SWIR SERHRS spectra are efficiently acquired from mouse spleen tissue. SWIR SERHRS combines two-photon imaging advantages with narrow vibrational peak widths, presenting future applications of multitargeted bioimaging.  相似文献   

15.
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has been declared a pandemic by WHO. The clinical manifestation and disease progression in COVID-19 patients varies from minimal symptoms to severe respiratory issues with multiple organ failure. Understanding the mechanism of SARS-CoV-2 interaction with host cells will provide key insights into the effective molecular targets for the development of novel therapeutics. Recent studies have identified virus-mediated phosphorylation or activation of some major signaling pathways, such as ERK1/2, JNK, p38, PI3K/AKT and NF-κB signaling, that potentially elicit the cytokine storm that serves as a major cause of tissue injuries. Several studies highlight the aggressive inflammatory response particularly ‘cytokine storm’ in SARS-CoV-2 patients. A depiction of host molecular dynamics triggered by SARS-CoV-2 in the form of a network of signaling molecules will be helpful for COVID-19 research. Therefore, we developed the signaling pathway map of SARS-CoV-2 infection using data mined from the recently published literature. This integrated signaling pathway map of SARS-CoV-2 consists of 326 proteins and 73 reactions. These include information pertaining to 1,629 molecular association events, 30 enzyme catalysis events, 43 activation/inhibition events, and 8,531 gene regulation events. The pathway map is publicly available through WikiPathways: https://www.wikipathways.org/index.php/Pathway:WP5115.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00632-4.  相似文献   

16.
Chlorophylls preserved in lake sediments have been used as a proxy to infer past trophic status. Recently, it has been demonstrated that visible-near-infrared (VNIR) reflectance spectroscopy can provide a rapid and non-destructive estimation of fossil chlorophylls from alpine lake sediments. The present study explores, (a) the applicability of VNIR reflectance spectroscopy to reconstructing historical productivity from boreal and saline lakes, and (b) the ability of an inference model combining all lake types to reconstruct historical chlorophyll concentrations from lake sediments. Results revealed that regardless of the lake type, a common sediment spectral feature of a reflectance trough centered near 675 nm, was observed. Additionally, the amplitude of reflectance in the VNIR region differs within and among lakes depending on their trophic states. The inferred concentration of total chlorophylls and derivatives from sediment spectral properties reflected a recent nutrient enrichment in most of the study lakes. Predicted chlorophyll concentration, when plotted against high-pressure liquid chromatography (HPLC) measured concentration combining all lake types, was found to be statically significant (r 2 = 0.80, P < 0.01). Collectively, results from this study indicate that regardless of the lake type, a common chlorophyll absorption feature near 675 nm can be detected, which is associated with contrasting limnological settings and, therefore, can be used as a viable tool to reconstruct paleoproductivity. A similar approach can be implemented for rapid and non-destructive detection of historical lake water quality in a wide range of lake sediments.  相似文献   

17.
The data on surface enhanced IR absorption (SEIRA) of nucleic acids deposited on a metal substrate were obtained using FTIR in reflectance mode. A 200-400 A thick gold film on a glass plate was the metal substrate. The approximate enhancement factors of the SEIRA for different vibrations of nucleic acids in our experimental conditions were 3-5. The roughness of the Au surface was about 50 A. Application of this method to nucleic acids isolated from tumor cells revealed some possible peculiarities of their structural organization, namely, the appearance of unusual sugar and base conformations, modification of the phosphate backbone, redistribution of the H-bond net, and so forth. This method enhanced a set of the bands, which is impossible to observe in conventional IR geometry. The SEIRA spectra of the RNA from tumor cells showed more sensitivity to the grade of tumor malignancy than the spectra of the DNA. After application of the anticancer drug doxorubicin to sensitive and resistant strains, the DNA isolated from these strains had different spectral features, especially in the region of the phosphate I and II bands. As induced by anticancer drugs, the conformational changes in the DNA from resistant and sensitive cancer strains could be characterized with different levels of structure disordering.  相似文献   

18.
Liang  Cuiping  Yi  Zao  Chen  Xifang  Tang  Yongjian  Yi  Yong  Zhou  Zigang  Wu  Xuanguang  Huang  Zhen  Yi  Yougen  Zhang  Guangfu 《Plasmonics (Norwell, Mass.)》2020,15(1):93-100

In this paper, we demonstrate a dual-band metamaterial perfect absorber based on a Ag-dielectric-Ag multilayer nanostructure. The structure of top metal film covers nanoring grooves array. A dielectric layer has a function of confining electromagnetic fields. Theoretical analysis shows that two absorption peaks (1059 nm and 1304 nm) with the absorption of 99.2% and 99.9% have been achieved, respectively. The physical origin of perfect absorption peaks are related to the Fabry-Perot resonance effect and localized surface plasmon resonance (LSPR) of the nanoring grooves. Its perfect absorption and resonance wavelength can be well regulated by adjusting the relevant structural parameters. Additionally, the absorber demonstrates good operation angle-polarization-tolerance at wide incident angles (0–60°). We believe that our design has a promising application in plasmon-enhanced photovoltaic, optical absorption switching, and modulator optical communications in the infrared regime.

  相似文献   

19.
A rapid and reliable intraoperative diagnostic technique to support clinical decisions was developed using Fourier‐transform infrared (FTIR) spectroscopy. Twenty‐six fresh tissue samples were collected intraoperatively from patients undergoing gynecological surgeries. Frozen section (FS) histopathology aimed to discriminate between malignant and benign tumors was performed, and attenuated total reflection (ATR) FTIR spectra were collected from these samples. Digital dehydration and principal component analysis and linear discriminant analysis (PCA‐LDA) models were developed to classify samples into malignant and benign groups. Two validation schemes were employed: k‐fold and “leave one out.” FTIR absorption spectrum of a fresh tissue sample was obtained in less than 5 minutes. The fingerprint spectral region of malignant tumors was consistently different from that of benign tumors. The PCA‐LDA discrimination model correctly classified the samples into malignant and benign groups with accuracies of 96% and 93% for the k‐fold and “leave one out” validation schemes, respectively. We showed that a simple tissue preparation followed by ATR‐FTIR spectroscopy provides accurate means for very rapid tumor classification into malignant and benign gynecological tumors. With further development, the proposed method has high potential to be used as an adjunct to the intraoperative FS histopathology technique.  相似文献   

20.
The object of this paper is in vivo study of skin spectral-characteristics in patients with kidney failure by conventional Raman spectroscopy in near infrared region. The experimental dataset was subjected to discriminant analysis with the projection on latent structures (PLS-DA). Application of Raman spectroscopy to investigate the forearm skin in 85 adult patients with kidney failure (90 spectra) and 40 healthy adult volunteers (80 spectra) has yielded the accuracy of 0.96, sensitivity of 0.94 and specificity of 0.99 in terms of identifying the target subjects with kidney failure. The autofluorescence analysis in the near infrared region identified the patients with kidney failure among healthy volunteers of the same age group with specificity, sensitivity, and accuracy of 0.91, 0.84, and 0.88, respectively. When classifying subjects by the presence of kidney failure using the PLS-DA method, the most informative Raman spectral bands are 1315 to 1330, 1450 to 1460, 1700 to 1800 cm−1. In general, the performed study demonstrates that for in vivo skin analysis, the conventional Raman spectroscopy can provide the basis for cost-effective and accurate detection of kidney failure and associated metabolic changes in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号