首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed Blue Intensity (BI) measurements from the crossdated ring sequences of Fokienia hodginsii (of the family Cupressaceae) from central Vietnam. BI has been utilized primarily as an indirect proxy measurement of latewood (LW) density of conifers (i.e., LWBI) from high latitude, temperature-limited boreal forests. As such, BI closely approximates maximum latewood density (MXD) measurements made from soft x-ray. The less commonly used earlywood (EW) BI (EWBI) represents the minimum density of EW and is influenced by the lighter pixels from the vacuoles or lumens of cells. The correlation of our BI measurements with climate, strongest for EWBI, rivals that for total ring width (RW), and we demonstrate that it can be successfully employed as an independent predictor for reconstruction models. EWBI exhibits robust spatial correlations with winter and spring land temperature, sea surface temperature (SST) over the regional domain of ENSO, and the Standardized Precipitation Evapotranspiration Index (SPEI) over Indochina. However, in order to mitigate the effects of color changes at the heartwood – sapwood boundary we calculated ΔBI (EWBI-LWBI), and it too exhibits a significant (p < 0.05), temporally stable response to prior autumn (Oct-Nov) rainfall and winter (December to April) dry season temperature. We interpret this response as reflecting a potential cavitation defense by reducing lumen diameter as a means to safeguard hydraulic conductivity in the stem, and to prevent the xylem from imploding due to negative pressure. This study has wide implications for the further use of BI from the global tropics, though it is unclear how many tropical tree species will be appropriate for use. It seems very likely that other wood anatomical measurements can be combined with BI and RW for climate reconstruction.  相似文献   

2.
For dendroclimatological Blue Intensity (BI) studies based on earlywood (EW) or latewood (LW) information, a demarcation between the two is necessary, which can be difficult to establish for species where the transition is subtle. Often, a percental value k is used that calculates an EW/LW boundary value for each tree ring individually based on the difference between maximum and minimum absorption. Several laboratories and authors have used different values for k (e.g. k = 30 % or k = 50 %), while wood anatomical and visual studies suggest that k is on the order of 80 %. Here, we test how different settings of k, and thus different definitions of the EW and LW proportions of a tree ring, influence the dendroclimatic potential of derived time series. To this end, we correlate instrumental temperature measurements with tree ring chronologies that are based on EW and LW information (e.g. EW absorption (EWBI), LW absorption (LWBI)), where the EW/LW proportion is varied by setting different values for k. The tree ring samples utilized are 30 cores of spruce (Picea abies) trees from a high-elevated site (ca. 1700 m a.s.l.) in the northern Alps, Austria. Overall, we achieve high correlations between temperature data and our tree ring chronologies. Regarding the stability of the climate signal under different k values, the results show that absorption intensity based parameters (ΔBI, EWBI, LWBI) are only mildly influenced by different settings of k, while width based parameters (EW width, LW width) show a larger dependence on k. LW width, for instance, was stronger correlated with temperature, the smaller the LW was chosen (and thus the higher k was set). Based on our results and the wood anatomical definition of the EW/LW boundary, we suggest that k = 80 % may be a good choice for future studies. However, since this is only a case study from one site, careful screening of the respective data set regarding an appropriate k value must accompany each dendroclimatological study.  相似文献   

3.
Climate changes, their regional patterns, origin, and prediction are currently one of the most important scientific challenges. Tree-rings are among the most widely used proxies for past climate variation. However tree-ring width (TRW) from certain tree species and regions often do not contain robust climate signal. Other parameters such as Maximum latewood density (MXD) of conifer tree rings are more sensitive to summer temperatures, but the measurements have high costs. A potential surrogate for MXD is blue intensity (BI), which is based on the measurements of high-resolution images of the wood. The method has been tested and applied for several species. However it has not been tested up to now for Pinus heldreichii Christ (PIHE) and Pinus peuce Griseb. (PIPE). Those species are with limited distribution on the Balkan Peninsula and due to their longevity (frequently more than 500 years with potential to more than 1000 years) may serve as one of the best proxies for past climate variation in SE Europe.We composed BI chronologies following standard procedures from PIHE and PIPE trees from subalpine locations in the Pirin Mts, Bulgaria. The correlation analysis with climate parameters revealed strong and significant positive correlations of PIHE BI (ΔBI and Latewood BI (LwBI) series) and summer temperatures. The highest were 0.74 (p < 0.05) with July-August average temperatures for the period 1933–1983. The correlation values of ΔBI remained higher than 0.6 for the whole period (1933–2014) and sub-periods both for average monthly and average maximum temperatures. LwBI values of the PIHE chronology had correlation coefficients above 0.52 (highest 0.64) with August and August-July temperatures. The PIPE BI chronologies were also positively correlated with summer temperatures, but showed lower values than PIHE with lower temporal stability. The most stable were the correlations with LwBI average August temperatures, which were above 0.52. Delta BI series displayed high correlations for the 1933–1983 period, but then decreased and this caused overall lower correlations with August temperatures. Our data shows that there is potential to develop long BI chronologies and proxy climate reconstructions from the studied species and in this way complement the knowledge of the past climate of SE Europe.  相似文献   

4.
Dendroprovenancing studies frequently use site chronologies to identify the origin of archaeological and historical timber. However, radial growth (tree-ring width, TRW) of tree species is influenced by both local and regional climate scales. Here we investigate how the use of annually-resolved Blue Intensity (BI) measurements can enhance dendroprovenancing precision of black pine (Pinus nigra Arn.) and Scots pine (P. sylvestris L.) on the Iberian Peninsula. Principal Component Gradient Analyses (PCGA) was used to assess geographical patterns of annual variation in different TRW and BI proxies of pine trees from two mountain ranges in the Central System and Andalusia in Spain. Local climate-growth relationships were quantified to identify underlying causes of identified groups with diverse growth patterns. Two distinct elevational groups were observed when performing PCGA on latewood BI time series with the response to summer drought as the main factor causing the differences. Both P. nigra and P. sylvestris BI time series were found to be more related to summer drought at low-elevation sites showing an increase in sensitivity at lower latitudes. PCGA of TRW time series allowed to discriminate between trees from Andalusia and Central System within the elevation groups. February and October temperatures were found to be the main climatic factors causing the differences in TRW time series among the high- elevation sites, whereas for low-elevation trees it was the average winter temperature influencing TRW. A subsequent leave-one-out analyses confirmed that including latewood BI time series improves the precision of dendroprovenancing of pine wood in the Iberian Peninsula.  相似文献   

5.
We propose a technique for separating the climatic signal which is contained in two tree-ring parameters widely used in dendroclimatology. The method is based on the removal of the relationship between tree-ring width (TRW) and maximum latewood density (MXD) observed for narrow tree rings from high latitudes. The new technique is tested on data from three larch stands located along the northern timberline in Eurasia. Correlations were calculated between the temperatures of pentads (five consecutive days), TRW chronologies and MXD chronologies calculated according to the standard and proposed methods. The analysis confirms the great importance of summer temperature for tree radial growth and tree-ring formation. TRW is positively correlated with the temperature of four to eight pentads (depending on the region) at the beginning of the growth season, but MXD as obtained by the standard technique is correlated with temperature over a much longer period. For maximum density series from which the relationship between MXD and TRW has been removed (MXD′), there is a clear correlation with temperatures in the second part of the growing season. These results are consistent with the known dynamics of tree-ring growth in high latitudes and mechanisms of tree-ring formation.  相似文献   

6.
The most frequently and successfully used tree-ring parameters for the study of temperature variations are ring width and maximum latewood density (MXD). MXD is preferred over ring width due to a more prominent association with temperature. In this study we explore the dendroclimate potential of dendroanatomy based on the first truly well replicated dataset. Twenty-nine mature living Pinus sylvestris trees were sampled in North-eastern Finland at the cool and moist boreal forest zone, close to the latitudinal tree line, where ring width, X-ray MXD as well as the blue intensity counterpart MXBI were compared with dendroanatomical parameters. Maximum radial cell wall thickness as well as anatomical MXD and latewood density appeared to be the most promising parameters for temperature reconstruction. In fact, these parameters compare favorably to MXD derived from X-ray techniques as well as MXBI, in terms of shared variation and temperature correlations across frequencies and over time. The reasons for these results are thought to be the unprecedentedly high measurement resolution of the anatomical technique, which provide the optimal resolution – the cell – whereas X-ray techniques have a slightly lower resolution and BI techniques even lower. While the results of this study are encouraging, further tests on longer and multigenerational chronologies are required to more generally and fully assess the dendroclimate potential of anatomical parameters.  相似文献   

7.
靳翔  徐庆  刘世荣  姜春前 《生态学报》2014,34(7):1831-1840
树木年轮(简称树轮)碳稳定同位素技术是研究树轮气候学的一种有效方法。利用四川卧龙亚高山暗针叶林不同海拔高度岷江冷杉树轮样本资料,提取该树轮稳定碳同位素(δ13C)和去趋势序列(DS),研究其树轮碳稳定同位素序列对气候要素(降水、月平均温度和月平均相对湿度)的响应关系,初步揭示了在全球气候变化背景下,川西亚高山森林岷江冷杉树木生长对气候因子变化(气候变暖、降水减少等)的响应方式。主要结论有:(1)岷江冷杉树轮δ13C组成变化范围为-23.33‰—-26.31‰,平均值为-24.91‰,变异系数为-0.011—-0.038,并表现出较强的一阶自相关;其对环境变化有较好的指示作用,表明岷江冷杉树轮δ13C组成在年际变化中较为稳定。(2)低海拔的岷江冷杉树轮δ13C分馏主要与当年8月月平均相对湿度和当年12月月平均温度相关性显著(P0.05);高海拔岷江冷杉树轮δ13C分馏主要与上一年8月月平均相对湿度和当年4月月平均温度相关性显著(P0.05);中海拔的岷江冷杉树轮δ13C分馏主要与上一年1、11月月平均温度和当年2、11月月平均温度相关性显著(P0.05),冬季温度是中海拔区岷江冷杉树木生长的限制因子,且具有明显的"滞后效应"。川西卧龙亚高山暗针叶林岷江冷杉树木径向生长主要受到气温的制约,从生物学基础上阐明了树木生长与环境的关系,冬季温度的升高,有利于植物生长期的提前,植物生长旺盛,抗旱能力减弱;同时证明了建群种岷江冷杉对雨水的依赖很小,这有利于植物生存,且维持了该植物群落的稳定性。该研究弥补了我国青藏高原高海拔地区气象台站稀少、观测资料时间短缺,为预测未来气候变化对岷江冷杉树木径向生长变化提供了科学的依据。  相似文献   

8.
Tree-ring research in the highland tropics and subtropics represents a major frontier for understanding climate-growth relationships. Nonetheless, there are many lowland regions – including the South American Pampa biome – with scarce tree ring data. We present the first two tree-ring chronologies for Scutia buxifolia in subtropical Southeastern South America (SESA), using 54 series from 29 trees in two sites in northern and southern Uruguay. We cross-dated annual rings and compared tree growth from 1950 to 2012 with regional climate variability, including rainfall, temperature and the Palmer Drought Severity Index – PDSI, the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM). Overall, ring width variability was highly responsive to climate signals linked to water availability. For example, tree growth was positively correlated with accumulated rainfall in the summer-fall prior to ring formation for both chronologies. Summer climate conditions were key for tree growth, as shown by a negative effect of hot summer temperatures and a positive correlation with PDSI in late austral summer. The El Niño phase in late spring/early summer favored an increase in rainfall and annual tree growth, while the La Niña phase was associated with less rainfall and reduced tree growth. Extratropical climate factors such as SAM had an equally relevant effect on tree growth, whereby the positive phase of SAM had a negative effect over radial growth. These findings demonstrate the potential for dendroclimatic research and climate reconstruction in a region with scarce tree-ring data. They also improve the understanding of how climate variability may affect woody growth in native forests – an extremely limited ecosystem in the Pampa biome.  相似文献   

9.
Although long-lived trees grow in the Northern Caucasus, no single tree-ring chronology has been reported thus far from this area in the International Tree-Ring Data Base (ITRDB), neither has one been published in international journals. Extensive tree-ring studies were conducted over the last decade, and a tree-ring network was developed for the investigated area. The data on the minimum blue intensity based on 33 series of pine (Pinus sylvestris L.) and fir (Abies nordmanniana (Steven) Spach) is presented in this study. The minimum blue intensity (BI) chronology covers the period 1596–2011 with EPS value ≥0.85. The BI chronology strongly correlates with the mean June-September temperature (R = 0.74; p < 0.05) from the weather station “Kluhorskij Pereval” (1951–2011). Mean June-September temperature anomalies were reconstructed using the rescaling method. Based on the reconstruction provided in this study the twentieth century is characterized by highly increased June-September temperature. According to this study, the minimum blue intensity approach demonstrates a great potential for paleoclimatic research in the Caucasus. Vast spatial coverage of the new BI-based reconstruction based on data from only two locations in the Northern Caucasus provides prospects for reconstruction of temperature variations for a great region in the Middle East and Northern Africa.  相似文献   

10.
The botanical family Lauraceae is ecologically and physiognomically very important in neotropical forests. It is one of the most frequent and distributed family both in number of individuals and species. Despite of this, we have noticed that a very few Lauraceae species have been considered in dendrochronological investigations. In order to analyze the potential of Lauraceae species in dendrochronology and to facilitate future studies we: (1) reviewed the literature on wood anatomy, cambial activity, tree growth and dendrochronology and compiled a list of species’ tree-ring features throughout the Neotropics; (2) Investigated wood anatomy, growth synchronism and climate-growth relationship using dendrochronological standard techniques in 14 species from subtropical forests of southern Brazil. Our review pointed out that the majority of Lauraceae forms distinct tree-rings in several biomes and climates in the Neotropics. Seasonal growth pattern related to water stress and to seasonal air temperature were identified in Amazonia and in subtropical high elevation sites, respectively. Time series of tree-ring width of Lauraceae species were successfully cross-dated and were already used in reconstruction of fire and vegetation dynamics. Our own dendrochronological investigations brought to light that all the 14 studied species form distinct tree-rings in seasonal or even rainforests. By analyzing time series of tree-ring width we found the same growth tendency within trees of Cinnamomum amoenum and Ocotea pulchella. Moreover, year-to-year variation in the growth time-series was linked to climate variations of temperature and precipitation, showing growth decreases when summer water stress occur. We evinced Lauraceae has distinct, synchronic and climate-sensitive tree-rings. Therefore, since Lauraceae has wide distribution and high frequency in the Neotropics and since many species become centenary, we strongly encourage the use of Lauraceae’s tree-rings in autoecology, climatology and on the reconstruction of vegetation and disturbance dynamics.  相似文献   

11.
北亚热带马尾松年轮宽度与NDVI的关系   总被引:2,自引:0,他引:2  
北亚热带地处暖温带向亚热带的过渡地区,对环境变化较为敏感。因此,研究北亚热带马尾松年轮宽度与森林NDVI的关系对于揭示陆地生态系统对全球气候变化的响应具有重要意义。以马尾松自然分布北界的南郑县和河南省鸡公山自然保护区为研究地点,利用北亚热带马尾松年轮宽度指数和1982-2006年逐月NOAA/AVHRR的归一化植被指数(NDVI)数据及气候数据,在分析年轮宽度及NDVI与气候因子关系的基础上,重点讨论了北亚热带马尾松径向生长与NDVI之间的关系。结果表明:北亚热带NDVI受水热条件的共同控制,其中与月均温相关性较强,且以正相关为主,与月降水量和干旱度指数多负相关;马尾松的径向生长与上一生长季的温度呈正相关,降水和干旱度指数为负相关,当年生长季内的温度和降水以促进作用为主,而与干旱度指数的关系在两地区内相反;南郑县和鸡公山地区年轮宽度与NDVI年值之间关系均不显著(P>0.05)。单月来讲,南郑县3、4、12月NDVI值与年表显著相关,鸡公山地区9月份的NDVI值与差值年表RES相关性最大;南郑县树木生长受温度影响最大,而鸡公山地区受温度和降水的综合作用。因此,在北亚热带地区,长时间序列的年轮宽度数据并不能很好反应NDVI的长期变化,利用树轮宽度指数来重建北亚热带地区NDVI需要进一步研究。  相似文献   

12.
利用树木年轮重建赣南地区1890年以来 2-3月份温度的变化   总被引:1,自引:0,他引:1  
曹受金  曹福祥  项文化 《生态学报》2012,32(20):6369-6375
采用树木年轮气候学方法,利用江西赣南地区马尾松(Pinus massoniana)的年轮宽度资料,分析了马尾松径向生长与气候要素变化的相关及响应关系,结果表明赣南地区马尾松径向生长与当年2—3月份的平均温度相关性最高。在响应分析的基础上,重建了江西赣南地区1890年以来2—3月份温度的变化历史。重建序列显示在过去119a中研究区存在3个较为明显的冷期(1892—1906年、1918—1922年、1944—1957年)和3个明显的暖期(1909—1917年、1959—1968年和1998—2008年)。  相似文献   

13.
Annual surface air temperatures across the eastern United States (US) have increased by more than 1 °C within the last century, with the recent decades marked by an unprecedented warming trend. Tree-rings have long been used as a proxy for climate reconstruction, but few truly temperature-sensitive trees have been documented for the eastern US, much less the Appalachian Mountains in the Southeast. Here, we measure blue intensity (BI) and ring width (RWI) in red spruce growing at the southernmost latitudinal range margin of the species on the North Carolina-Tennessee border to test the efficacy of using either metric as a temperature proxy in the eastern US. The BI and RWI chronologies spanned 1883–2008 and had an interseries correlations of 0.42 and 0.54, respectively, but time series were trimmed to the period 1950–2008 due to low sample depth. We discovered strong, positive, and stable correlations between both current-year early fall (September–October) Tmax (r = 0.62; p < 0.001) and Tmean (r = 0.51; p < 0.001) and ΔBI during the period 1950–2008, but found no significant relationships between temperature and RWI. We show BI metrics measured in red spruce to be a promising temperature proxy for the southern Appalachian Mountain region. Future research should focus on testing [1] the efficacy of using BI on red spruce collected from across the species range, and [2] the potential for using BI as a temperature proxy in other conifers distributed in the eastern US.  相似文献   

14.
Clanwilliam cedar (Widdringtonia cedarbergensis; WICE), a long-lived conifer with distinct tree rings in Cape Province, South Africa, has potential to provide a unique high-resolution climate proxy for southern Africa. However, the climate signal in WICE tree-ring width (TRW) is weak and the dendroclimatic potential of other WICE tree-ring parameters therefore needs to be explored. Here, we investigate the climatic signal in various tree-ring parameters, including TRW, Minimum Density (MND), Maximum Latewood Density (MXD), Maximum Latewood Blue Intensity (MXBI), and stable carbon and oxygen isotopes (δ18O and δ13C) measured in WICE samples collected in 1978. MND was negatively influenced by early spring (October-November) precipitation whereas TRW was positively influenced by spring November-December precipitation. MXD was negatively influenced by autumn (April-May) temperature whereas MXBI was not influenced by temperature. Both MXD and MXBI were negatively influenced by January-March and January-May precipitation respectively. We did not find a significant climate signal in either of the stable isotope time series, which were measured on a limited number of samples. WICE can live to be at least 356 years old and the current TRW chronology extends back to 1564 CE. The development of full-length chronologies of alternative tree-ring parameters, particularly MND, would allow for an annually resolved, multi-century spring precipitation reconstruction for this region in southern Africa, where vulnerability to future climate change is high.  相似文献   

15.
Insect outbreaks are key disturbances triggering decline episodes in humid subtropical evergreen forests in eastern China. However, their long-term variability and linkages to climate are still unclear largely due to the shortness of records reporting forest damage. A retrospective approach would improve our understanding of long-term outbreak variability and its dependence on climate and relevant atmospheric circulation patterns such as the El Niño-Southern Oscillation (ENSO). This study provides a dendrochronological reconstruction of Dendrolimus punctatus outbreaks affecting Pinus massoniana in humid subtropical eastern China. We used tree-ring width and carbon isotope data from sites where outbreaks were or not were reported for the past fifty years, here considered as host and non-host sites, respectively. The results showed that inter-annual changes in carbon isotope discrimination are more sensitive to outbreaks than changes in tree-ring width. Based on carbon isotopes, we inferred that photosynthetic rates increased as a compensatory mechanism in response to insect defoliation. We reconstructed eleven insect outbreaks since 1915, which corresponded to ENSO positive phases and below-average sea surface temperatures in the central and eastern tropical Pacific Ocean. These conditions correspond to “La Niña” episodes which induce hot and dry climate conditions across the study region and these may facilitate the occurrence of D. punctatus outbreaks.  相似文献   

16.
Stable isotopes in tree rings have widely been used for palaeoclimate reconstructions since tree rings record climatic information at annual resolution. However, various wood components or different parts of an annual tree-ring may differ in their isotopic compositions. Thus, sample preparation and subsequent laboratory analysis are crucial for the isotopic signal retained in the final tree-ring isotope series used for climate reconstruction and must therefore be considered for the interpretation of isotope–climate relationships. This study focuses on wood of Corsican Pine trees (Pinus nigra ssp. laricio) as this tree species allows to reconstruct the long-term climate evolution in the western Mediterranean. In a pilot study, we concentrated on methodological issues of sample preparation techniques in order to evaluate isotope records measured on pooled whole tree-ring cellulose and whole tree-ring bulk wood samples. We analysed 80-year long carbon and oxygen chronologies of Corsican Pine trees growing near the upper tree line on Corsica. Carbon and oxygen isotope records of whole tree-ring bulk wood and whole tree-ring cellulose from a pooled sample of 5 trees were correlated with the climate parameters monthly precipitation, temperature and the self-calibrating Palmer Drought Severity Index (sc-PDSI). Results show that the offsets in carbon and oxygen isotopes of bulk wood and cellulose are not constant over time. Both isotopes correlate with climate parameters from late winter and summer. The carbon and oxygen isotope ratios of cellulose are more sensitive to climatic variables than those of bulk wood. The results of this study imply that extraction of cellulose is a pre-requisite for the reconstruction of high-resolution climate records from stable isotope series of P. nigra ssp. laricio.  相似文献   

17.
Recent increases in temperature over the semi-arid western United States have been shown to exacerbate drought, reducing streamflow, and increasing stress on ecosystems. Our understanding of the role temperature played during drought in the more distant past is far from complete. While numerous tree-ring proxy records of moisture provide evidence for past extreme droughts in this region, few contemporaneous tree-ring proxy records of temperatures exist. This limits our ability to evaluate the variable influence of temperature on drought over past centuries and to contextualize the present interplay of moisture and temperature during more recent drought events. It is also important to understand the complexity of climatic interactions that produced drought under natural variability prior to evaluating the potential impacts of future climate change. In response to this knowledge gap, we undertook the first extensive evaluation of climate sensitivity in Rocky Mountain bristlecone pine (Pinus aristata Engelm.), focusing on the potential for developing new multi-century proxy records of both temperature and precipitation. We isolated dominant patterns of growth variability among trees from ten ring-width datasets across the Southern Rocky Mountains of Colorado and New Mexico and assessed their response to climate. We utilized both an empirical orthogonal function (EOF) analysis and a modified form of hierarchical cluster analysis to produce time series representing growth patterns in P. aristata. The results indicate a widespread June drought stress signal with a high potential for multi-millennial reconstruction. We also found a positive minimum temperature response during late summer, evident only at lower frequency and co-occurring at locations with the June drought stress signal. The potential for temperature reconstruction will require further investigation into the physiological linkages between P. aristata and climate variability. The presence of multiple climate responses within P. aristata sampling sites highlights the need for particular care when including P. aristata in regional climate reconstructions.  相似文献   

18.
We present a 523-year (A.D. 1481–2003) tree-ring width index chronology of Teak (Tectona grandis L.F.) from Kerala, Southern India, prepared from three forest sites. Dendroclimatological investigations indicate a significant positive relationship between the tree-ring index series and Indian summer monsoon rainfall (ISMR) and related global parameters like the Southern Oscillation Index (SOI). A higher frequency of occurrence of low tree growth is observed in years of deficient Indian monsoon rainfall (droughts) associated with El Niño since the late 18th century. Prior to that time, many low tree growth years are detected during known El Niño events, probably related to deficient Indian monsoon rainfall. The general relationship between ISMR and El Niño is known to be negative and the spatial correlations between our Kerala tree-ring chronology and sea surface temperatures (SSTs) over the Niño regions follow similar patterns as those for ISMR. This relationship indicates strong ENSO-related monsoon signals in the tree-ring records. These tree-ring chronologies with a high degree of sensitivity to monsoon climate are useful tools to understand the vagaries of monsoon rainfall prior to the period of recorded data.  相似文献   

19.
Understanding how tree rings of different species at different elevations respond to climate, and whether their relationship is stable over time is crucial not only for credible palaeoclimatic reconstructions, but also for better awareness of forest growth dynamics and therefore making scientific management decisions against a background of global warming. In this work, six tree-ring chronologies of Pinus taiwanensis at three sites from 800 to 1550 m above sea level (asl), and Pinus massoniana at three sites from 500 to 650 m asl were developed in the Dabie Mountains (DBS), subtropical China. In recent decades, only P. taiwanensis at 1550 m asl showed a positive growth-trend. Both P. taiwanensis at 800 m asl and three low-altitude P. massoniana at 500–650 m asl showed negative growth trends. Climate-growth relationship analyses revealed that 1) temperature was the dominant climatic factor that controlled tree-ring growth in DBS. It exerted most influence on trees growing at the lower and upper limit, than for trees growing at altitudes from 650 to 1450 m asl. Only precipitation in October positively influenced tree growth of P. massoniana at all three sites and P. taiwanensis at 800 m asl; 2) There was a shift in temperature’s impact on trees, that was from significantly negative relationship at the four lower altitudes, mainly for the current growing-season, to significantly positive relationship in previous February–July period at the highest altitude. The higher the altitude, the more significant the lag effect of temperature on trees; 3) The influence of temperature on tree growth at most altitudes were variable over time. The positive influence of temperature on trees at 1550 and 1450 m asl was comparatively stable during the early period of instrumental records. It strengthened evidently since the early 1990s, which is coincidental with the timing of the evident temperature increase in DBS. On the contrary, the negative impacts of temperature on tree growth at 800, 650 and 500 m asl had weakened since the early 1990s. Besides the increase of water use efficiency of trees, we speculated that the increasing influence of precipitation in May and July weakened the relationship between temperature and tree rings at low altitudes. This work points out that the upper and lower limits of forest in DBS offer the preferred locations for future sampling in climate reconstruction, but the stability of tree growth and climate over time should be considered. Moreover, forest management should give priority to altitude factors, in addition to tree species representation.  相似文献   

20.
为了解我国东南部亚热带森林不同海拔树木生长对气候响应的差异,建立了福建省武夷山脉东麓2个样点的4个马尾松(Pinus massoniana)轮宽年表,对树木径向生长与气候因子进行了bootstrapped相关分析和线性混合模型(LME)拟合。结果表明,在高海拔地区马尾松径向生长对气候因子年际波动敏感性较强,主要表现为与生长季前冬季光温条件以及生长季内7月降水的正相关,生长-气候关系在不同样点间表现出较强的一致性。线性混合模型可以较好地拟合高海拔树木生长变化,当使用前1年12月平均日最高温、当年1月日照时长和当年7月降雨量3个气候变量进行拟合时,模型解释量达到0.5,其中前1年12月最高温和当年1月日照时数在模型中起到主导作用,累积相对贡献率约占80%,说明生长季前冬季的光热条件是限制高海拔马尾松径向生长最主要的气候因子。因此,我国亚热带地区高海拔的树木径向生长可能对未来气候变化有更强的敏感性,相关森林管理政策的制定需要将此纳入考虑;同时我国亚热带地区高海拔森林中的树木有被用于树轮气候重建的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号