首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rat pheochromocytoma 12 (PC12) cells undergo neuronal differentiation in response to nerve growth factor (NGF). NGF-induced differentiation involves a number of protein kinases, including extracellular signal-regulated kinase (ERK). We studied the effect of iron on neuronal differentiation, using as model the neurite outgrowth of PC12 cells triggered by NGF when the cells are plated on collagen-coated dishes in medium containing 1% serum. The addition of iron enhanced NGF-mediated cell adhesion, spreading and neurite outgrowth. The differentiation-promoting effect of iron seems to depend on intracellular iron, since nitrilotriacetic acid (an efficient iron-uptake mediator) enhanced the response to iron. In agreement with this, intracellular, but not extracellular, iron enhanced NGF-induced neurite outgrowth in pre-spread PC12 cells, and this was correlated with increased ERK activity. Taken together, these data suggest that intracellular iron promotes NGF-stimulated differentiation of PC12 cells by increasing ERK activity.  相似文献   

3.
Retinoic acid (RA) induces the differentiation of many cell lines, including those derived from neuroblastoma. RA treatment of SH-SY5Y cells induces the appearance of functional Trk B and Trk C receptors. Acute stimulation of RA-predifferentiated SH-SY5Y cells with brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), or neurotrophin 4/5 (NT-4/5), but not nerve growth factor (NGF), induces Trk autophosphorylation, followed by phosphorylation of Akt and the extracellular signal-regulated kinases (ERKs) 1 and 2. In addition, BDNF, NT-3, or NT-4/5, but not NGF, promotes cell survival and neurite outgrowth in serum-free medium. The mitogen-activated protein kinase and ERK kinase (MEK) inhibitor PD98059 blocks BDNF-induced neurite outgrowth and growth-associated protein-43 expression but has no effects on cell survival. On the other hand, the phosphatidylinositol 3-kinase inhibitor LY249002 reverses the survival response elicited by BDNF, leading to a cell death with morphological features of apoptosis.  相似文献   

4.
Neurotrophin-3 (NT-3) is well known to play an important role in facilitating neuronal survival and differentiation during development. However, the mechanisms by which neurotrophin-3 promotes prolonged Akt/MAPK signaling at an early stage are not well understood. Here, we report that NT-3 works at an early stage of neuronal differentiation in mouse neural stem cells (NSCs). After treatment with NT-3 for 12h, more NSCs differentiated into neurons than did untreated cells. These findings demonstrated that stimulation with NT-3 causes NSCs to differentiate into neurons through a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the phosphorylated extracellular signal-regulated kinase (ERK) pathway. In addition, treatment with NT-3 induced neurite outgrowth by specific phosphorylation of p38 MAPK, which was accompanied by neuronal differentiation. Taken together, these results suggest that NT-3, along with the Trk C receptors in NSCs, might lead to the survival and neuronal differentiation of NSCs via two distinct downstream signaling pathways at an early stage of neuronal differentiation.  相似文献   

5.
Compounds isolated from Magnolia officinalis such as magnolol, honokiol and obovatol exhibit several pharmacological effects on CNS including depressant, anxiolytic and anticonvulsant effects, as well as neuroprotective effects against chemical and heat damages. Recently, honokiol was found to have a neurotrophic effect in fetal rat cortical neurons. In the present study, we show that 4-O-methylhonokiol, a novel compound from Magnolia officinalis, promotes neurite outgrowth in a concentration-dependent manner in rat embryonic neuronal cells. In parallel with the neurite outgrowth activity, the expression of neurite outgrowth marker proteins is also increased by treatment with 4-O-methylhonokiol. We also found that 4-O-methylhonokiol promotes the release of NGF and BDNF into cell culture medium. In addition, lower concentration of 4-O-methylhonokiol (1 and 2 μM) further enhanced neurite outgrowth and expression of neurite outgrowth marker proteins in the presence of NGF (50 ng/ml) or BDNF (10 ng/ml). Subsequently, we found that 4-O-methylhonokiol activates ERK in a concentration-dependent manner. However, the neurite outgrowth activity and the NGF and BDNF release induced by 4-O-methylhonokiol are suppressed by an ERK-specific inhibitor. These results suggest that 4-O-methylhonokiol has the ability to induce neurite outgrowth via the increase of neurotrophic factor levels through ERK activation.  相似文献   

6.
Suramin is a well-known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers. Previous study showed that suramin is an activator of extracellular signal-regulated kinase (ERK1/2) signaling in several cell lines including Chinese hamster ovary cells, although the physiological relevance of this activation remains uncertain. Here, it was shown that suramin enhances neurite outgrowth concomitant with activation of ERK1/2 in Neuro-2a cells, a neuronal cell line. These neurite outgrowth and ERK1/2 activation were significantly inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase, as well as by activation of endogenous adenosine A2A receptors. The suramin-induced phosphorylation of ERK1/2 was also inhibited by inhibitors of Src family kinases. This attenuation of ERK1/2 activity was accompanied by a significant decrease in suramin-induced neurite outgrowth. These results suggest that suramin activates the Src/ERK1/2 signaling pathway that induces neurite outgrowth, both of which are negatively regulated by cAMP produced in response to activation of endogenous adenosine A2A receptors.  相似文献   

7.
The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.  相似文献   

8.
Fibroblast growth factor (FGF) is an important modulator of cell growth and differentiation of various cells including neuron. Cells need to adhere specifically to cellular and extracellular components of their environment to carry out diverse physiological functions. Here, we examined whether fibronectin (FN) and FGF can cooperate for neuronal adhesion and neurite outgrowth. Using recombinant FN peptide (FNIII9-10), we found that FNIII9-10-mediated adhesion promotes the effect of FGF1 on neurite outgrowth of PC12 cells, while FGF1 enhances the FNIII9-10-mediated neuronal adhesion of PC12 cells. This collaboration of FNIII9-10 and FGF1 was the result of the sustained activation of extracellular signal-regulated kinase (ERK)-type MAP kinase. Finally, the synergistic activity of FGF1 and FN was inhibited by PD98059, an MEK inhibitor. Taken together, these findings indicate that FN-mediated signaling can collaborate with FGFRs signaling for neurite outgrowth through selective activation of ERK-type MAP kinase in PC12 cells, and suggest that FN and FGF act in concert to regulate cell differentiation in the nervous system.  相似文献   

9.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

10.
Mesenchymal stem cells (MSCs) can be differentiated into cell types derived from all three germ layers by manipulating culture conditions in vitro. A multitude of growth and differentiation factors have been employed for driving MSCs towards a neuronal phenotype. In the present study, we investigated the potential of extracellular matrix (ECM) proteins—fibronectin, collagen-1, collagen-IV, laminin-1, and laminin-10/11, to induce a neuronal phenotype in bone marrow derived human MSCs in the absence of growth factors/differentiating agents. All of the ECM proteins tested were found to support adhesion of MSCs to different extents. However, direct interaction only with laminin-1 triggered sprouting of neurite-like processes. Cells plated on laminin-1 exhibited neurite out growth as early as 3 h, and by 24 h, the cells developed elaborate neurites with contracted cell bodies and neuronal-like morphology. Function-blocking antibodies directed against α6 and β1 integrin subunits inhibited neurite formation on laminin-1 which confirmed the involvement of integrin α6β1 in neurite outgrowth. Mechanistic studies revealed that cell adhesion to laminin-1 activated focal adhesion kinase (FAK), and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways. Abrogation of FAK phosphorylation by herbimycin-A inhibited neurite formation and also decreased activities of MEK and ERK. Pharmacological inhibitors of MEK (U0126) and ERK (PD98059) also blocked neurite outgrowth in cells plated on laminin-1. Our study demonstrates the involvement of integrin α6β1 and FAK-MEK/ERK signaling pathways in laminin-1-induced neurite outgrowth in MSCs in the absence of serum and differentiation factors.  相似文献   

11.
Wu CL  Chou YH  Chang YJ  Teng NY  Hsu HL  Chen L 《PloS one》2012,7(4):e34999
The regulation of neurite outgrowth is crucial in developing strategies to promote neurite regeneration after nerve injury and in degenerative diseases. In this study, we demonstrate that overexpression of an adaptor/scaffolding protein SH2B1β promotes neurite re-growth of differentiated PC12 cells, an established neuronal model, using wound healing (scraping) assays. Cell migration and the subsequent remodeling are crucial determinants during neurite regeneration. We provide evidence suggesting that overexpressing SH2B1β enhances protein kinase C (PKC)-dependent cell migration and phosphatidylinositol 3-kinase (PI3K)-AKT-, mitogen activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK) kinase (MEK)-ERK-dependent neurite re-growth. Our results further reveal a cross-talk between pathways involving PKC and ERK1/2 in regulating neurite re-growth and cell migration. We conclude that temporal regulation of cell migration and neurite outgrowth by SH2B1β contributes to the enhanced regeneration of differentiated PC12 cells.  相似文献   

12.
Neurite outgrowth is an important process in neural regeneration and plasticity, especially after neural injury, and recent evidence indicates that several Gαi/o protein-coupled receptors play an important role in neurite outgrowth. The neuropeptide (NP)FF system contains two Gαi/o protein-coupled receptors, NPFF1 and NPFF2 receptors, which are mainly distributed in the central nervous system. The aim of the present study was to determine whether the NPFF system is involved in neurite outgrowth in Neuro 2A cells. We showed that Neuro 2A cells endogenously expressed NPFF2 receptor, and the NPFF2 receptor agonist dNPA inhibited cyclic adenosine monophosphate (cAMP) production stimulated by forskolin in Neuro 2A cells. We also demonstrated that NPFF and dNPA dose-dependently induced neurite outgrowth in Neuro 2A cells, which was completely abolished by the NPFF receptor antagonist RF9. Pretreatment with mitogen-activated protein kinase inhibitors PD98059 and U0126 decreased dNPA-induced neurite outgrowth. In addition, dNPA increased phosphorylation of extracellular signal-regulated kinase (ERK) in Neuro 2A cells, which was completely antagonized by pretreatment with U0126. Our results suggest that activation of NPFF2 receptor stimulates neurite outgrowth in Neuro 2A cells through activation of the ERK signaling pathway. Moreover, NPFF2 receptor may be a potential therapeutic target for neural injury and degeneration in the future.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF) is involved in regulating the growth of ovarian follicles, maturation of the oocyte, and development of the early embryo through its receptor, tyrosine kinase receptor B (TrkB). However, it is still unclear as to how BDNF influences proliferation and steroidogenesis of bovine granulosa cells (GCs). In this paper, we confirmed that BDNF and TrkB were expressed in bovine GCs, and that proliferation and steroidogenesis by bovine GCs were reduced by knockdown of BDNF or inhibition of TrkB. With respect to GC proliferation, BDNF enhanced cellular viability and the percentage of cells in the S phase. BDNF also activated both protein kinase B (PKB, also known as AKT) and the extracellular signal-regulated protein kinase 1/2 (ERK1/2)-signaling pathway. Through the AKT-signaling pathway, BDNF increased the expression of proliferation-related genes, including cyclin A1 (CCNA1), cyclin E2 (CCNE2), cyclin D1 (CCND1), and cyclin-dependent kinase 1 (CDK1). However, through the ERK1/2 signaling pathway, BDNF only increased the expression of CCNA1 and CCNE2. Regarding steroidogenesis by bovine GCs, BDNF promoted progesterone (P 4) synthesis, but had no effect on estradiol; it also activated the AKT-signaling pathway and increased the expression of steroidogenesis-related genes, including steroidogenic acute regulatory protein (STAR) and hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 1 (HSD3B1). In summary, our data are the first to show that BDNF promotes the proliferation of bovine GCs through TrkB–AKT and ERK1/2 signaling pathways and increases P4 synthesis by bovine GCs through the TrkB–AKT signaling pathway.  相似文献   

14.
15.
The chondroitin sulfate proteoglycan versican is one of the major extracellular components in the developing and adult brain. Here, we show that isoforms of versican play different roles in neuronal differentiation and neurite outgrowth. Expression of versican V1 isoform in PC12 cells induced complete differentiation, whereas expression of V2 induced an aborted differentiation accompanied by apoptosis. V1 promoted neurite outgrowth of hippocampal neurons, but V2 failed to do so. V1 transfection enhanced expression of epidermal growth factor receptor and integrins, and facilitated sustained extracellular signal-regulated kinase/MAPK phosphorylation. Blockade of the epidermal growth factor receptor, beta1 integrin, or Src significantly inhibited neuronal differentiation. Finally, we demonstrated that versican V1 isoform also promoted differentiation of neural stem cells into neurons. Our results have implications for understanding how versican regulates neuronal development, function, and repair.  相似文献   

16.
The present study examined the role of phospholipase D2 (PLD2) in the regulation of depolarization-induced neurite outgrowth and the expression of growth-associated protein-43 (GAP-43) and synapsin I in rat pheochromocytoma (PC12) cells. Depolarization of PC12 cells with 50 mmol/L KCl increased neurite outgrowth and elevated mRNA and protein expression of GAP-43 and synapsin I. These increases were suppressed by inhibition of Ca2+-calmodulin-dependent protein kinase II (CaMKII), PLD, or mitogen-activated protein kinase kinase (MEK). Knockdown of PLD2 by small interfering RNA (siRNA) suppressed the depolarization-induced neurite outgrowth, and the increase in GAP-43 and synapsin I expression. Depolarization evoked a Ca2+ rise that activated various signaling enzymes and the cAMP response element-binding protein (CREB). Silencing CaMKIIδ by siRNA blocked KCl-induced phosphorylation of proline-rich protein tyrosine kinase 2 (Pyk2), Src kinase, and extracellular signal-regulated kinase (ERK). Inhibition of Src or MEK abolished phosphorylation of ERK and CREB. Furthermore, phosphorylation of Pyk2, ERK, and CREB was suppressed by the PLD inhibitor, 1-butanol and transfection of PLD2 siRNA, whereas it was enhanced by over-expression of wild-type PLD2. Depolarization-induced PLD2 activation was suppressed by CaMKII and Src inhibitors, but not by MEK or protein kinase A inhibitors. These results suggest that the signaling pathway of depolarization-induced PLD2 activation was downstream of CaMKIIδ and Src, and upstream of Pyk2(Y881) and ERK/CREB, but independent of the protein kinase A. This is the first demonstration that PLD2 activation is involved in GAP-43 and synapsin I expression during depolarization-induced neuronal differentiation in PC12 cells.  相似文献   

17.
18.
Cui HL  Qiao JT 《生理学报》2006,58(6):547-555
溶血磷脂酸(1ysophosphatidic acid,LPA)是一种细胞外磷脂信号。本研究用[^3H]-胸腺嘧啶掺入法、免疫细胞化学和Western blot等技术,观察了LPA对体外培养的大鼠胚胎神经干细胞(neural stem cells,NSCs)的增殖以及向MAF2标记的一般神经元和ChAT标记的胆碱能神经元的分化的影响。结果显示:(1)在特殊的无血清培养基中加入低浓度的LPA(0.01-1.0μmol/L)后,NSCs对【^3H】-胸腺嘧啶的摄入呈剂量依赖性增加,表明LPA对NSCs有显著的促增殖作用;(2)在培养基中加入胎牛血清以诱导NSCs的分化,发现低浓度的LPA增加MAF2阳性和ChAT阳性神经元的比例,0.1μmol/L LPA引起的增加达到峰值;(3)Western blot分析显示LPA促进了MAP2和ChAT的表达;(4)在诱导NSCs出现分化早期,用倒置显微镜观察到低浓度的LPA明显促进细胞突起的生长和细胞的迁移。以上结果表明,低浓度LPA在一定范围内可以促进NSCs的增殖、并分化为一般的MAP2阳性神经元和特殊的胆碱能神经元,而且LPA可以促进在分化早期出现的神经元或神经胶质细胞前体细胞的迁移和突起生长。  相似文献   

19.
Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC‐induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC‐differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo.  相似文献   

20.
Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号