首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence indicates that inflammatory response is significant during the physiological process of human parturition; however, the specific signaling pathway that triggers inflammation is undefined. Toll-like receptors (TLRs) are key upstream gatekeepers that control inflammatory activation before preterm delivery. Our previous study showed that TLR4 expression was significantly increased in human pregnancy tissue during preterm and term labor. Therefore, we explore whether TLR4 plays a role in term labor by initiating inflammatory responses, therefore promoting uterine activation. The results showed that expression of TLR4, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), CC chemokine ligand 2 (CCL-2), and uterine contraction-associated proteins (CAPs) was upregulated in the human and mice term labor (TL) group compared with the not-in-labor (TNL) group, and the TLR4 level positively correlated with CAP expression. In pregnant TLR4-knockout (TLR4−/−) mice, gestation length was extended by 8 hr compared with the wild-type group, and the expression of IL-1β, IL-6, TNF-α, CCL-2, and CAPs was decreased in TLR4−/− mice. Furthermore, nuclear factor-κB (NF-κB) and P38MAPK activation is involved in the initiation of labor but was inhibited in TLR4−/− mice. In uterine smooth muscle cells, the expression of inflammatory cytokines and CAPs decreased when the NF-κB and P38MAPK pathway was inhibited. Our data suggest that TLR4 is a key factor in regulating the inflammatory response that drives uterine activation and delivery initiation via activating the NF-κB/P38MAPK pathway.  相似文献   

2.
AimsTo investigate whether haematopoietic TLR4 deletion attenuates perivascular brown adipose tissue inflammation in atherosclerotic mice.Methods and ResultsExperiments were performed using irradiated LDL receptor-deficient (LDLR−/−) mice with marrow from either TLR4-deficient (TLR4−/−) or age-matched wild-type (WT) mice. After 12 weeks of being fed a high-cholesterol diet, TLR4−/−  LDLR−/− mice developed fewer atherosclerotic lesions in the aorta compared to WT  LDLR−/− mice. This effect was associated with an increase in multilocular lipid droplets and mitochondria in perivascular adipose tissue (PVAT). Immunofluorescence analysis confirmed that there was an increase in capillary density and M2 macrophage infiltration, accompanied by a decrease in tumour necrosis factor (TNF)-α expression in the localized PVAT of TLR4−/−  LDLR−/− mice. In vitro studies indicated that bone marrow-derived macrophages (BMDMs) from WT mice demonstrated an M1-like phenotype and expression of inflammatory cytokines induced by palmitate. These effects were attenuated in BMDMs isolated from TLR4−/− mice. Furthermore, brown adipocytes incubated with conditioned medium (CM) derived from palmitate-treated BMDMs, exhibited larger and more unilocular lipid droplets, and reduced expression of brown adipocyte-specific markers and perilipin-1 compared to those observed in brown adipocytes exposed to CM from palmitate-treated BMDMs of TLR4−/− mice. This decreased potency was primarily due to TNF-α, as demonstrated by the capacity of the TNF-α neutralizing antibody to reverse these effects.ConclusionsThese results suggest that haematopoietic-specific deletion of TLR4 promotes PVAT homeostasis, which is involved in reducing macrophage-induced TNF-α secretion and increasing mitochondrial biogenesis in brown adipocytes.  相似文献   

3.
Platelet-neutrophil interaction is well known for its role in inflammatory diseases; however, its biological role in atherosclerosis (AS) progression remains unclear. Human peripheral blood neutrophils were obtained to compare toll-like receptor 4 (TLR4), tumor necrosis factor α (TNF-α), interleukin (IL)-1β and myeloid-related proteins 8/14 (Mrp8/14) levels in 22 AS patients with those in 18 healthy controls using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Meanwhile, mouse marrow neutrophils subjected to different treatment were collected for the ELISA assay, cell apoptosis, and Western blot analysis. Normal diet or high-fat diet ApoE−/− mice with or without administration of Mrp8/14 antagonist paquinimod were used for plasma collection to measure total cholesterol, triglycerides, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol, TNF-α, IL-1β, Mrp8/14, TLR4, and nuclear factor (NF)-κB p65 levels. The results showed that Mrp8/14 and TLR4-mediated inflammatory pathway was activated in neutrophils of AS patients. In vitro experiments demonstrated that platelet-neutrophil interaction promoted the Mrp8/14 release and inhibited neutrophil apoptosis via P-selectin. Furthermore, platelet-neutrophil interaction upregulated TLR4/myeloid differentiation factor 88/NF-κB pathway. Conversely, Mrp8/14/TLR4/NF-κB interference alleviated AS progression. In conclusion, Mrp8/14/TLR4/NF-κB activated by platelet-neutrophil interaction is an important inflammatory signaling pathway for AS pathogenesis.  相似文献   

4.
目的探讨心肌缺血-再灌注损伤中趋化因子CXCL10的产生机制。方法分别用LPS、H2O2、Ca2+载体A23187刺激原代培养的心肌细胞、骨髓来源的巨噬细胞或二者混合培养的共培养系统后,ELISA检测培养基上清中的趋化因子CXCL10和促炎性细胞因子IL-1β、IL-6、TNF-α的含量,观察其表达动力学。结果①大剂量(10μg/mL)的LPS刺激心肌细胞主要产生趋化因子CXCL10;刺激骨髓来源巨噬细胞主要产生促炎性细胞因子IL-1β、IL-6、TNF-α。②H2 O2、Ca2+通道激活剂并不能使产生趋化因子CXCL10或IL-1β、IL-6、TNF-α这些促炎性细胞因子。③骨髓来源的巨噬细胞促进心肌细胞表达趋化因子CXCL10;心肌细胞促进骨髓来源的巨噬细胞表达IL-6、TNF-α,但抑制IL-1β的表达。结论心肌细胞是心肌缺血-再灌注损伤中CXCL10潜在的细胞来源;CXCL10的表达,主要依赖于TLR4的激活。  相似文献   

5.
The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11b(hi) DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity.  相似文献   

6.
Hypersensitivity pneumonitis (HP) is an interstitial lung disease that develops following repeated exposure to environmental antigens. The disease results in alveolitis, granuloma formation and may progress to a fibrotic chronic form, which is associated with significant morbidity and mortality. The severity of the disease correlates with a neutrophil rich influx and an IL-17 response. We used the Saccharopolyspora rectivirgula (SR) model of HP to determine whether Toll-like receptors (TLR) 2 and 9 cooperate in neutrophil recruitment and IL-17-associated cytokine production during the development of HP. Stimulation of bone marrow derived macrophages (BMDMs) from C57BL/6, MyD88-/- and TLR2/9-/- mice with SR demonstrate that SR is a strong inducer of neutrophil chemokines and growth factors. The cytokines induced by SR were MyD88-dependent and, of those, most were partially or completely dependent on TLRs 2 and 9. Following in vivo exposure to SR, CXCL2 production and neutrophil recruitment were reduced in TLR2-/- and TLR2/9-/- mice suggesting that the response was largely dependent on TLR2; however the reduction was greatest in the TLR2/9-/- double knockout mice indicating TLR9 may also contribute to the response. There was a reduction in the levels of pro-inflammatory cytokines TNFα and IL-6 as well as CCL3 and CCL4 in the BALF from TLR2/9-/- mice compared to WT and single knockout (SKO) mice exposed one time to SR. The decrease in neutrophil recruitment and TNFα production in the TLR2/9-/- mice was maintained throughout 3 weeks of SR exposures in comparison to WT and SKO mice. Both TLRs 2 and 9 contributed to the Th17 response; there was a decrease in Th17 cells and IL-17 mRNA in the TLR2/9-/- mice in comparison to the WT and SKO mice. Despite the effects on neutrophil recruitment and the IL-17 response, TLR2/9-/- mice developed granuloma formation similarly to WT and SKO mice suggesting that there are additional mediators and pattern recognition receptors involved in the disease.  相似文献   

7.
《Cellular signalling》2014,26(5):942-950
Cytokine induction in response to Mycobacterium tuberculosis (Mtb) infection is critical for pathogen control, by (i) mediating innate immune effector functions and (ii) instructing specific adaptive immunity. IL-10 is an important anti-inflammatory cytokine involved in pathogenesis of tuberculosis (TB). Here, we show that TLR3, a sensor of extracellular viral or host RNA with stable stem structures derived from infected or damaged cells, is essential for Mtb-induced IL-10 production. Upon Mycobacterium bovis Bacillus Calmette–Guérin (BCG) infection, TLR3−/− macrophages expressed lower IL-10 but higher IL-12p40 production, accompanied by reduced phosphorylation of AKT at Ser473. BCG-infected TLR3−/− mice exhibited reduced IL-10 but elevated IL-12 expression compared to controls. Moreover, higher numbers of splenic Th1 cells and reduced pulmonary bacterial burden and tissue damage were observed in BCG-infected TLR3−/− mice. Finally, BCG RNA induced IL-10 in macrophages via TLR3-mediated activation of PI3K/AKT. Our findings demonstrate a critical role of TLR3-mediated regulation in the pathogenesis of mycobacterial infection involving mycobacterial RNA, which induces IL-10 through the PI3K/AKT signaling pathway.  相似文献   

8.
Psoriasis is a common chronic autoimmune skin disease of unknown cause that involves dysregulated interplay between immune cells and keratinocytes. IL-22 is a cytokine produced by the TH1, TH17, and TH22 subsets that are functionally implicated in the psoriatic pathology. We assessed the role of IL-22 in a mouse model where psoriasiform skin inflammation is triggered by topical application of the TLR7/8 agonist imiquimod. At the macroscopic level, scaly skin lesions induced by daily applications of imiquimod in wild-type mice were almost totally absent in IL-22-deficient mice or in mice treated with a blocking anti-IL-22 Ab. At the microscopic level, IL-22-deficient mice showed a dramatic decrease in the development of pustules and a partial decrease in acanthosis. At the molecular level, the absence or inhibition of IL-22 strongly decreased the expression of chemotactic factors such as CCL3 and CXCL3 and of biomarkers such as S100A8, S100A7, and keratin 14, which reflect the antimicrobial and hyperproliferative responses of keratinocytes. IL-22 also played a major role in neutrophil infiltration after imiquimod treatment. IL-23 was required for IL-22 production, and γδ TCR lymphocytes represented the major source of IL-22 in lymph nodes from imiquimod-treated mice. However, T cells were not absolutely required for IL-22 production because imiquimod-induced IL-22 expression in the skin is still preserved in Rag2(-/-) mice. Taken together, our data show that IL-22 is required for psoriasis-like lesions in the mouse imiquimod model and is produced by both T cells and innate immune cells.  相似文献   

9.
Mycobacterial infection in TLR2 and TLR6 knockout mice   总被引:11,自引:0,他引:11  
To investigate the role of TLR in the development of murine tuberculosis in vivo, TLR2 and TLR6 knockout (KO) mice were infected with Mycobacterium tuberculosis by placing them in the exposure chamber of an airborne infection apparatus. Both TLR2 and TLR6 KO mice survived until sacrifice at 12 weeks after infection. Infected TLR2 KO mice developed granulomatous pulmonary lesions with neutrophil infiltration, which were slightly larger in size than those in wild-type mice. Pulmonary levels of the mRNAs for inducible nitric oxide synthase (iNOS), TNF-alpha, TGF-beta, IL-1beta, and IL-2 were significantly lower, but levels of the mRNAs for IL-4 and IL-6 were higher, than in wild-type (WT) mice. No significant difference was recognized in cytokine mRNA expression between TLR2 KO and WT mice at 12 weeks after infection. DNA binding by NF-kappaB was low in TLR2 KO mice. On the other hand, TLR6 KO mice were not different from WT mice in terms of pulmonary histopathology, mRNA expression and CFU assay. Therefore, TLR2 does not play an essential role in the pathogenesis of murine tuberculosis, although it is important for defense against mycobacterial infection.  相似文献   

10.
Mature dendritic cells (DCs) play a pathogenic role in atherosclerosis. Our previous study demonstrated that exogenous interleukin (IL)-37 suppresses the maturation of DCs, induces the T-regulatory (Treg) cell response, and attenuates atherosclerosis in ApoE−/− mice. The aim of the present study was to explore the molecular mechanism of IL-37 on the maturation of DCs throughout the development of atherosclerosis. The expression of interleukin-1 receptor 8 (IL-1R8), which is a single Ig-domain receptor that was recently found to be pivotal for the extracellular function of IL-37, Toll-like receptor (TLR) 4 and p65, was measured in ApoE−/− mice and IL-37 transgenic (IL-37tg) ApoE−/− mice. IL-1R8 was mainly expressed in aortic plaque-infiltrated DCs and at significantly higher levels in IL-37tg atherosclerotic mice, accompanied by lower levels of TLR4 and p65. Furthermore, IL-37 eliminated the maturation of DCs induced by oxidized low-density lipoprotein (oxLDL) and caused marked upregulation of IL-1R8 in vitro and downregulation of TLR4 and p65, which was consistent with the experiments in mice. However, the inhibitory effect of IL-37 on the maturation of DCs in vitro was abolished when IL-37 was used to treat DCs isolated from IL-1R8-deficient and TLR4-deficient mice. Therefore, this study indicated that IL-37 inhibited the maturation of DCs via the IL-1R8-TLR4-NF-κB pathway and attenuated atherosclerosis in ApoE−/− mice.  相似文献   

11.
Role of TLR1 and TLR6 in the host defense against disseminated candidiasis   总被引:3,自引:0,他引:3  
Toll-like receptor-1 (TLR1) and TLR6 are receptors of the TLR family that form heterodimers with TLR2. The role of TLR1 and TLR6 for the recognition of the fungal pathogen Candida albicans was investigated. TLR1 is not involved in the recognition of C. albicans, and TLR1 knock-out (TLR1-/-) mice showed a normal susceptibility to disseminated candidiasis. In contrast, recognition of C. albicans by TLR6 modulated the balance between Th1 and Th2 cytokines, and TLR6 knock-out mice displayed a defective production of IL-10 and an increased IFN-gamma release. Production of the monocyte-derived cytokines tumor necrosis factor, IL-1, and IL-6 was normal in TLR6-/- mice, and this was accompanied by a normal susceptibility to disseminated candidiasis. In conclusion, TLR6 is involved in the recognition of C. albicans and modulates the Th1/Th2 cytokine balance, but this results in a mild phenotype with a normal susceptibility of TLR6-/- mice to Candida infection.  相似文献   

12.
13.
Mesenchymal stem cells (MSCs) inhibit the proliferation or activation of lymphocytes, and their inhibitory effects do not require human leukocyte antigen (HLA)-matching because MSCs express low levels of HLA molecules. Therefore, MSCs may be able to regulate immune responses. In this study, we determined whether MSCs could inhibit psoriasis-like skin inflammation in mice. After induction of psoriasis-like skin inflammation using intradermal injection of IL-23 or topical application of imiquimod with or without treatment with MSC, mouse skins were collected, and H&E staining and real-time PCR were performed. IL-23-induced skin inflammation was inhibited when MSCs were injected on day ?1 and day 7. The expression of proinflammatory cytokines such as IL-6, IL-17, and TNF-α was inhibited by MSC injection, and the expression of chemokines such as CCL17, CCL20, and CCL27 was also decreased in mouse skin. We also determined whether MSCs could not only prevent but also treat psoriasis-like skin inflammation in mice. Furthermore, in vitro experiments also showed anti-inflammatory effects of MSCs. Dendritic cells which are co-cultured with MSCs suppressed CD4+ T cell activation and differentiation, which are important for the pathogenesis of psoriasis. These results suggest that MSCs could be useful for treating psoriasis.  相似文献   

14.
Recent studies indicate that TLRs are critical in generating innate immune responses during infection with HSV-1. In this study, we investigated the role of TLR2 signaling in regulating the production of neuroimmune mediators by examining cytokine and chemokine expression using primary microglial cells obtained from TLR2-/- as well as wild-type mice. Data presented here demonstrate that TLR2 signaling is required for the production of proinflammatory cytokines and chemokines: TNF-alpha, IL-1beta, IL-6, IL-12, CCL7, CCL8, CCL9, CXCL1, CXCL2, CXCL4, and CXCL5. CXCL9 and CXCL10 were also induced by HSV, but their production was not dependent upon TLR2 signaling. Because TLR2-/- mice display significantly reduced mortality and diminished neuroinflammation in response to brain infection with HSV, the TLR2-dependent cytokines identified here might function as key players influencing viral neuropathogenesis.  相似文献   

15.
Psoriasis is a complex inflammatory disease resulting from the activation of T helper (Th) 1 and Th17 cells. Recent evidence suggests that abnormal activation of Toll-like receptors (TLRs) 7, 8 and 9 contributes to the initiation and maintenance of psoriasis. We have evaluated the effects of TLR antagonists on the gene expression profile in an IL-23-induced skin inflammation model in mice. Psoriasis-like skin lesions were induced in C57BL/6 mice by intradermal injection of IL-23 in the dorsum. Two TLR antagonists were compared: IMO-3100, an antagonist of TLRs 7 and 9, and IMO-8400, an antagonist of TLRs 7, 8 and 9, both of which previously have been shown to reduce epidermal hyperplasia in this model. Skin gene expression profiles of IL-23-induced inflammation were compared with or without TLR antagonist treatment. IL-23 injection resulted in alteration of 5100 gene probes (fold change ≥ 2, FDR < 0.05) including IL-17 pathways that are up-regulated in psoriasis vulgaris. Targeting TLRs 7, 8 and 9 with IMO-8400 resulted in modulation of more than 2300 mRNAs while targeting TLRs 7 and 9 with IMO-3100 resulted in modulation of more than 1900 mRNAs. Both agents strongly decreased IL-17A expression (>12-fold reduction), normalized IL-17 induced genes such as beta-defensin and CXCL1, and normalized aberrant expression of keratin 16 (indicating epidermal hyperplasia). These results suggest that IL-23-driven inflammation in mouse skin may be dependent on signaling mediated by TLRs 7, 8, and 9 and that these receptors represent novel therapeutic targets in psoriasis vulgaris and other diseases with similar pathophysiology.  相似文献   

16.
IL-1 is a potent pro-inflammatory cytokine that activates intracellular signaling cascades some of which may involve IL-1 receptor associated kinase-1 (IRAK1). Psoriasis is a T cell dependent chronic inflammatory condition of the skin of unknown cause. IL-1 has been implicated in psoriasis pathology, but the mechanism has not been elucidated. Interestingly, expression of IRAK1 is elevated in psoriatic skin. To identify a potential link between IL-1, keratinocytes and T cells in skin inflammation we employed pathway-focused microarrays to evaluate IL-1 dependent gene expression in keratinocytes. Several candidate mRNAs encoding known T cell chemoattractants were identified in primary keratinocytes and the stable keratinocyte cell line HaCaT. CCL5 and CCL20 mRNA and protein levels were confirmed up-regulated by IL-1 in concentration and time-dependent manners. Furthermore IL-1 synergized with IFN-γ and TNF-α. Expression of CXCL9, CXCL10 and CXCL11 mRNAs was also increased in response to IL-1, but protein could only be detected in medium from cells treated with IFN-γ alone or in combination with IL-1. Over-expression of IRAK1 led to increased constitutive and cytokine induced production of CCL5 and CCL20. Inhibition of IRAK1 activity through RNAi or expression of a dominant negative mutant blocked production of CCL5 and CCL20 but had no effect upon the IL-1 enhancement of IFN-γ induced CXCL9, CXCL10 and CXCL11 production. In conclusion IL-1 regulates T cell targeting chemokine production in keratinocytes through IRAK1 dependent and independent pathways. These pathways may contribute to acute and chronic skin inflammation.  相似文献   

17.
Lipopolysaccharide (LPS) induces macrophage/monocyte activation and pro-inflammatory cytokines production by activating Toll-like receptor 4 (TLR-4) signaling. Rab GTPase 21 (Rab21) is a member of the Rab GTPase subfamily. In the present study, we show that LPS induced TLR4 and Rab21 association and endosomal translocation in murine bone marrow–derived macrophages (BMDMs) and primary human peripheral blood mononuclear cells (PBMCs). In BMDMs, shRNA-mediated stable knockdown of Rab21 inhibited LPS-induced expression and production of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α). Conversely, forced overexpression of Rab21 by an adenovirus construct potentiated LPS-induced IL-1β, IL-6 and TNF-α production in BMDMs. Further studies show that LPS-induced TLR4 endosomal traffic and downstream c-Jun and NFκB (nuclear factor-kappa B) activation were significantly inhibited by Rab21 shRNA, but intensified with Rab21 overexpression in BMDMs. Finally, in the primary human PBMCs, siRNA-induced knockdown of Rab21 significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production. Taken together, we suggest that Rab21 regulates LPS-induced pro-inflammatory responses by promoting TLR4 endosomal traffic and downstream signaling activation.  相似文献   

18.
Activation of astrocytes and microglia and the production of proinflammatory cytokines and chemokines are often associated with virus infection in the CNS as well as a number of neurological diseases of unknown etiology. These inflammatory responses may be initiated by recognition of pathogen-associated molecular patterns (PAMPs) that stimulate TLRs. TLR7 and TLR8 were identified as eliciting antiviral effects when stimulated by viral ssRNA. In the present study, we examined the potential of TLR7 and/or TLR8 agonists to induce glial activation and neuroinflammation in the CNS by intracerebroventricular inoculation of TLR7 and/or TLR8 agonists in newborn mice. The TLR7 agonist imiquimod induced astrocyte activation and up-regulation of proinflammatory cytokines and chemokines, including IFN-beta, TNF, CCL2, and CXCL10. However, these responses were only of short duration when compared with responses induced by the TLR4 agonist LPS. Interestingly, some of the TLR7 and/or TLR8 agonists differed in their ability to activate glial cells as evidenced by their ability to induce cytokine and chemokine expression both in vivo and in vitro. Thus, TLR7 stimulation can induce neuroinflammatory responses in the brain, but individual TLR7 agonists may differ in their ability to stimulate cells of the CNS.  相似文献   

19.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

20.
Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP)-expressing A. fumigatus (Af293.1RFP) conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1β and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that β-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1−/− corneas have impaired IL-1β and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high β-glucan. In contrast to Dectin 1−/− mice, cellular infiltration into infected TLR2−/−, TLR4−/−, and MD-2−/− mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4−/− mice, but not TLR2−/− or MD-2−/− mice. We also found that TRIF−/− and TIRAP−/− mice exhibited no fungal-killing defects, but that MyD88−/− and IL-1R1−/− mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which β-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1β, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4-dependent fungal killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号