首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe purpose of this study was to investigate the feasibility of MOSFET dosimeter in measuring eye dose during 2D MV portal imaging for setup verification in radiotherapy.Materials and methodsThe in-vivo dose measurements were performed by placing the dosimeters over the eyes of 30 brain patients during the acquisition of portal images in linear accelerator by delivering 1 MU with the field sizes of 10 × 10 cm2 and 15 × 15 cm2.ResultsThe mean doses received by the left and right eyes of 10 out of 30 patients when both eyes were completely inside the anterior portal field were found to be 2.56 ± 0.2 cGy and 2.75 ± 0.2, respectively. Similarly, for next 10 patients out of the same 30 patients the mean doses to left and right eyes when both eyes were completely out of the anterior portal fields were found to be 0.13 ± 0.02 cGy and 0.17 ± 0.02 cGy, respectively. The mean doses to ipsilateral and contralateral eye for the last 10 patients when one eye was inside the anterior portal field were found to be 3.28 ± 0.2 cGy and 0.36 ± 0.1 cGy, respectively.ConclusionThe promising results obtained during 2D MV portal imaging using MOSFET have shown that this dosimeter is well suitable for assessing low doses during imaging thereby enabling to optimize the imaging procedure using the dosimetric data obtained. In addition, the documentation of the dose received by the patient during imaging procedure is possible with the help of an in-built software in conjunction with the MOSFET reader module.  相似文献   

2.
PurposeA new polymer gel dosimeter recipe was investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomer 2-Acrylamido 2-Methyl Propane Sulfonic acid (AMPS).MethodsThe new formulation was named PAMPSGAT. The MRI response (R2) of the dosimeters was analyzed for conditions of varying dose, dose rate, and temperature during scanning. Radiological properties of the PAMPSGAT polymer gel dosimeter were investigated.ResultsThe dose-response (R2) of AMPS/Bis appears to be linear over a dose range 10–40 Gy. The percentage of difference between the R2 values for imaging at 15 °C and MRI room temperature is about 4.6% for vial with 40 Gy absorbed dose which decreased to less than 1% for imaging at 20 °C. The percentage difference of Zeff of PAMPSGAT gel and soft tissue was less than 1% in the practical energy range (100 KeV–100 MeV). The electron density of the PAMPSGAT polymer gel was 2.9% higher than that of muscle. Results showed that the sensitivity of PAMPSGAT polymer gel dosimeter irradiated by 60Co (energy = 1.25 MeV) is about 27.7% higher than that of irradiated using a 6 MeV Linac system.ConclusionsTemperature during MRI scanning has a small effect on the R2 response of the PAMPSGAT polymer gel dosimeter. Results confirmed tissue equivalency of the PAMPSGAT polymer gel dosimeter in most practical energy range. The PAMPSGAT polymer gel dosimeter response depends on energy and dose rate.  相似文献   

3.
PurposeAdvanced 3D dosimetry is required for verifications of complex dose distributions in modern radiotherapy. Two 3D polymer gel dosimeters, coupled with magnetic resonance (MR) imaging (3 T MRI) readout and data processing with polyGeVero® software, were tested for the verification of calculated 3D dose distributions by a treatment planning system (TPS) and ArcCHECK®–3DVH®, related to eradication of a lung tumour.MethodsN-vinylpyrrolidone-containing 3D polymer gel dosimeters were used: VIC (containing ascorbic acid and copper sulfate pentahydrate) and VIC-T (containing tetrakis(hydroxymethyl)phosphonium chloride). Three remote centers were involved in the dosimeters preparation and irradiation (Poland), and MRI (Austria). Cross beam calibration of the dosimeters and verification of a 3D dose distribution calculated with an Eclipse External Beam TPS and ArcCHECK®–3DVH® were performed. The 3D-to-3D comparisons of the VIC and VIC-T with TPS and ArcCHECK®–3DVH® along with ArcCHECK®–3DVH® versus TPS dose matrixes were performed with the aid of the polyGeVero® by analyzing dose profiles, isodoses lines, gamma index, gamma angle, dose difference, and related histograms.ResultsThe measured MR-relaxation rate (R2 = 1/T2) for the dosimeters relates to the dose, as follows: R2 = 0.0928 ± 0.0008 [Gy−1 s−1] × D [Gy] + 2.985 ± 0.012 [s−1] (VIC) and 0.1839 ± 0.0044 [Gy−1 s−1] × D [Gy] + 2.519 ± 0.053 [s−1] (VIC-T). The 3D-to-3D comparisons revealed a good agreement between the measured and calculated 3D dose distributions.ConclusionsVIC and VIC-T with 3T MRI readout and polyGeVero® showed potential for verifications of calculated irradiation plans. The results obtained suggest the implementation of the irradiation plan for eradication of the lung tumour.  相似文献   

4.
《Médecine Nucléaire》2019,43(5-6):381-385
AimProduction of 68Ga-radiopharmaceuticals is a rapidly growing field in France. However, operators may already be involved in other radiopharmaceutical activities. It is thus necessary to know the exposure of this new activity.Material and methodsFor passive dosimetry, a radiophotoluminescent (RPL) dosimeter, a thermoluminescent (TLD) chip, 2 TLD rings and a passive dosimeter for crystalline were used. For active dosimetry, an extremity dosimeter and a whole body dosimeter were used. This study was performed during semi-automatized production of 68Ga-investigational medicinal products. Values were normalized to 500MBq manipulated (median activity using a 1850MBq 68Ga-generator), 60 radiosynthesis (maximum enrollment ability of our center) and 2 operators. A LB123 proportional counter was used for quantification of external exposition to 10MBq 68Ge and internal exposition by inhalation was theoretically assessed. 68Ga emission attenuation by collective protection equipments was also discussed.ResultsConsidering passive dosimetry, the equivalent dose to extremities was 21.75 ± 0.34 mSv, the whole-body effective dose was 0.189 ± 0.011 mSv and the dose to crystalline was 0.925 ± 0.009 mSv. Considering active dosimetry, the equivalent dose to extremities was 8,75 ± 0.12 mSv and the whole-body effective dose was 0,088 ± 0.009 mSv. Total exposure to 68Ge was 1.75 μSv.ConclusionIn our hands, 68Ga is a directly transposable activity in radiopharmacies already equipped for 18F because of a dosimetry complying with regulatory limits and suitable radiation protection of collective equipments.  相似文献   

5.
AimTo determine the energy and dose dependence of GafChromic EBT3-V3 film over an energy range 0.2 mm Al HVL to 6 MV.BackgroundThe decay scheme of a brachytherapy source may be complex and the spectrum of energy can be wide. LiF TLDs are the golden standard recommended for dosimetric measures in brachytherapy, for their energy independence, but TLDs could be not available in some centres. An alternative way to perform dose measurements is to use GafChromic films, but they show energy dependence.Methods and materialsFilms have been irradiated at increasing dose with three different beams: 6 MV beam, TPR20, 10 = (0.684 ± 0.01), HVL = (2.00 ± 0.01)mmAl and HVL = (0.20 ± 0.01)mmAl. Calibration curves were generated using the same dose range (0cGy to 850cGy) for the three energies. Using the 6 MV calibration curve as reference, the film response in terms of net optical density (OD) was evaluated.ResultsThe difference in the calibration curve obtained by irradiating the film with 6 MV and 2 mm Al HVL energy beams is less than 3 %, within the calibration uncertainty, in the dose range 500-850cGy. The OD of EBT3-V3 film is significantly lower at 0.2 mmAl HVL compared to 6 MV, showing differences up to 25 %.ConclusionWithin the range 6 MV-2 mm Al HVL and dose higher than 500cGy, GafChromic EBT3-V3 films are energy independent. In this dose range, films can be calibrated in a simple geometry, using a 6 MV Linac beam, and can be used for brachytherapy sources dose measures. The use of EBT3 films can be extended to reference dosimetry in Ir-192 clinical brachytherapy.  相似文献   

6.
PurposeTo analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose.MethodsThe eye lens dose was estimated in terms of Hp(0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The Hp(0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (PKA) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions.ResultsThe annual eye lens doses estimated on goggles were 4.13 ± 0.93 and 4.98 ± 1.28 mSv. Over the aprons, the doses obtained were 10.83 ± 0.99 and 11.97 ± 1.44 mSv. The correlation between the goggles and the apron dose was R2 = 0.89, with a ratio of 0.38. The correlation with the patient dose was R2 = 0.40, with a ratio of 1.79 μSv Gy−1 cm−2. The dose per procedure obtained over the aprons was 102 ± 16 μSv, and on goggles 40 ± 9 μSv. The eye lens dose normalized to PKA was 2.21 ± 0.58 μSv Gy−1 cm−2.ConclusionsMeasurements of personal dose equivalent over the paediatric cardiologist’s apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used.  相似文献   

7.
PurposeTo estimate fetal dose and its components from three-dimensional conformal radiotherapy for several malignancies presented during pregnancy.Materials and methodsFetal dose was measured from radiotherapy for Hodgkin's lymphoma and for tumors in the region of nasopharynx, breast and lung. Anthropomorphic phantoms were used to simulate an average pregnant patient at the first, second and third trimesters of gestation. Thermoluminescent dosemeters (TLD) were employed for fetal dose measurements. Phantom exposures were also performed to estimate fetal dose due to head leakage, scatter from collimators and beam modifiers and scatter generated inside the phantom (Din). All treatments were delivered for 6 MV photon beams.ResultsRadiotherapy of Hodgkin's lymphoma resulted in a fetal dose of 5.6–57.9 cGy depending upon the gestational age and the distance between the fetal level and the field edge. The corresponding dose ranges for treatment of nasopharyngeal, breast and lung cancer was 4.0–17.1 cGy, 3.9–24.8 cGy and 5.7–74.3 cGy, respectively. The Din at the first trimester of gestation was always smaller than 10 cGy for all examined malignancies. Pregnancy progression resulted in Din values above or below 10 cGy depending upon the treatment site and gestational age.ConclusionThis study provides data about the fetal exposure and the contribution of Din to the total fetal dose from conformal radiation therapy. The Din knowledge prior to patient's irradiation enables radiation oncologists and medical physicists to decide whether fetal dose may be limited to 10 cGy or less with or without the introduction of special shielding materials.  相似文献   

8.
PurposeTo characterize the dose distribution in water of a novel beta-emitting brachytherapy source for use in a Conformal Superficial Brachytherapy (CSBT) device.Methods and materialsYttrium-90 (90Y) sources were designed for use with a uniquely designed CSBT device. Depth dose and planar dose measurements were performed for bare sources and sources housed within a 3D printed source holder. Monte Carlo simulated dose rate distributions were compared to film-based measurements. Gamma analysis was performed to compare simulated and measured dose rates from seven 90Y sources placed simultaneously using the CSBT device.ResultsThe film-based maximum measured surface dose rate for a bare source in contact with the surface was 3.35 × 10–7 cGy s−1 Bq−1. When placed in the source holder, the maximum measured dose rate was 1.41 × 10–7 cGy s−1 Bq−1. The Monte Carlo simulated depth dose rates were within 10% or 0.02 cm of the measured dose rates for each depth of measurement. The maximum film surface dose rate measured using a seven-source configuration within the CSBT device was 1.78 × 10−7 cGy s−1 Bq−1. Measured and simulated dose rate distribution of the seven-source configuration were compared by gamma analysis and yielded a passing rate of 94.08%. The gamma criteria were 3% for dose-difference and 0.07056 cm for distance-to-agreement. The estimated measured dose rate uncertainty was 5.34%.Conclusions90Y is a unique source that can be optimally designed for a customized CSBT device. The rapid dose falloff provided a high dose gradient, ideal for treatment of superficial lesions. The dose rate uncertainty of the 90Y-based CSBT device was within acceptable brachytherapy standards and warrants further investigation.  相似文献   

9.
AimThe aim of this study was to estimate the secondary malignancy risk from the radiation in FFB prostate linac-based radiotherapy for different organs of the patient.BackgroundRadiation therapy is one of the main procedures of cancer treatment. However, the application the radiation may impose dose to organs of the patient which can be the cause of some malignancies.Materials and methodsMonte Carlo (MC) simulation was used to calculate radiation doses to patient organs in 18 MV linear accelerator (linac) based radiotherapy. A humanoid MC phantom was used to calculate the equivalent dose s for different organs and probability of secondary cancer, fatal and nonfatal risk, and other risks and parameters related to megavoltage radiation therapy. In out-of-field radiation calculation, it could be seen that neutrons imparted a higher dose to distant organs, and the dose to surrounding organs was mainly due to absorbed scattered photons and electron contamination.ResultsOur results showed that the bladder and skin with 54.89 × 10−3 mSv/Gy and 46.09 × 10−3 mSv/Gy, respectively, absorbed the highest equivalent dose s from photoneutrons, while a lower dose was absorbed by the lung at 3.42 × 10−3 mSv/Gy. The large intestine and bladder absorbed 55.00 × 10−3 mSv/Gy and 49.08 × 10−3, respectively, which were the highest equivalent dose s due to photons. The brain absorbed the lowest out-of-field dose, at 1.87 × 10−3 mSv/Gy.ConclusionsWe concluded that secondary neutron portion was higher than other radiation. Then, we recommended more attention to neutrons in the radiation protection in linac based high energy radiotherapy.  相似文献   

10.
PurposeTriple channel algorithm and specific procedures make more reliable radiochromic dosimetry for treatment planning verification and quality assurance in radiation therapy. A tool to obtain radiochromic dose distributions and compare them with the ones resulting from a treatment planning system was developed and applied.MethodsThe tool was developed as Microsoft Excel macro; it builds dose calibration curves against net optical density of Gafchromic EBT3 film, produces axial, coronal and sagittal dose maps and allows to evaluate them against dose distributions calculated by the Varian treatment planning system Eclipse using gamma index and gamma angle.ResultsThe net optical density standard errors of estimate of calibration curves at 6 MV Varian DBX600 linac energy were 0.2%, 0.4% and 0.2% for the red, green and blue channels. Tests of these curves by means of three independent eight dose points measurement series, at 15 MV and 6 MV Varian 2100C linac and at 6 MV DBX600 linac energies, showed less than 2% of dose errors for the red channel and less than 3% for the green channel in the range 100–450 cGy. The comparisons between dose distributions from Gafchromic EBT3 triple channel algorithm and the ones from Eclipse analytic anisotropic algorithm (AAA) showed values of gamma index 95th percentile between 0.6 and 1.0.ConclusionThe obtained results encourage the application of this tool in radiation therapy quality assurance.  相似文献   

11.
PurposeIn modern radiotherapy techniques, to ensure an accurate beam modeling process, dosimeters with high accuracy and spatial resolution are required. Therefore, this work aims to propose a simple, robust, and a small-scale fiber-integrated X-ray inorganic detector and investigate the dosimetric characteristics used in radiotherapy.MethodsThe detector is based on red-emitting silver-activated zinc-cadmium sulfide (Zn,Cd)S:Ag nanoclusters and the proposed system has been tested under 6 MV photons with standard dose rate used in the patient treatment protocol. The article presents the performances of the detector in terms of dose linearity, repeatability, reproducibility, percentage depth dose distribution, and field output factor. A comparative study is shown using a microdiamond dosimeter and considering data from recent literature.ResultsWe accurately measured a small field beam profile of 0.5 × 0.5 cm2 at a spatial resolution of 100 µm using a LINAC system. The dose linearity at 400 MU/min has shown less than 0.53% and 1.10% deviations from perfect linearity for the regular and smallest field. Percentage depth dose measurement agrees with microdiamond measurements within 1.30% and 2.94%, respectively for regular to small field beams. Besides, the stem effect analysis shows a negligible contribution in the measurements for fields smaller than 3x3 cm2. This study highlights the drastic decrease of the convolution effect using a point-like detector, especially in small dimension beam characterization. Field output factor has shown a good agreement while comparing it with the microdiamond dosimeter.ConclusionAll the results presented here anticipated that the developed detector can accurately measure delivered dose to the region of interest, claim accurate depth dose distribution hence it can be a suitable candidate for beam characterization and quality assurance of LINAC system.  相似文献   

12.
This study investigates the superficial dose from FFF beams in comparison with the conventional flattened ones using a Monte Carlo (MC) method. Published phase-space files which incorporated real geometry of a TrueBeam accelerator were used for the dose calculation in phantom and clinical cases. The photon fluence on the central axis is 3 times that of a flattened beam for a 6 MV FFF beam and 5 times for a 10 MV beam. The mean energy across the field in air at the phantom surface is 0.92–0.95 MeV for the 6 MV FFF beam and 1.18–1.30 MeV for the corresponding flattened beam. At 10 MV, the values are 1.52–1.72 and 2.15–2.87 MeV for the FFF and flattened beams, respectively. The phantom dose at the depth of 1 mm in the 6 MV FFF beam is 6% ± 2.5% (of the maximum dose) higher compared to the flattened beam for a 25 × 25 cm2 field and 14.6% ± 1.9% for the 2 × 2 cm2 field. For the 10 MV beam, the corresponding differences are 3.4% ± 1.5% and 10.7% ± 0.6%. The skin dose difference at selected points on the patient's surface between the plans using FFF and flattened beams in the head-and-neck case was 6.5% ± 2.3% (1SD), and for the breast case it was 6.4% ± 2.3%. The Monte Carlo simulations showed that due to the lower mean energy in the FFF beam, the clinical superficial dose is higher without the flattening filter compared to the flattened beam.  相似文献   

13.
Purpose: Dosimetry of ionizing radiation quantifies the energy deposited by an incident beam to the medium. This study presents the relative response of two types of gel dosimeters describing their differences by estimating radiation chemical yields produced in water radiolysis.Methods: Two types of gel dosimeter were used, namely an acid ferrous ion solution infused with xylenol orange known as Fricke gel and a polymer gel based on acrylamide and N,N’-methylenebis(acrylamide) known as PAGAT. Samples were irradiated using two photon beam energies, one from a conventional X-ray tube operated at 44 kV and the other one from a LINAC operated at 6 MV. The dosimeters were analyzed by optical absorbance and magnetic resonance imaging. Additionally, the linear energy transfer of each beam was calculated using Monte Carlo simulations for further estimation of the radiation chemical yields produced during water radiolysis.Results: Obtained results for both gel dosimeters indicate that their response at 44 kV and 6 MV are different, regardless of the read-out technique. On average, the sensitivity at 44 kV was found to be 65 % of the response at 6 MV. The calculated radiation chemical yields are in agreement with the observed experimental results.Conclusions: The main reason for the difference in the response of the dosimeters may be related to the linear energy transfer of each photon beam, which varies the production of primary chemical species during water radiolysis.  相似文献   

14.
The present study intended to investigate the composition of a new polymer gel dosimeter. The new composition would be more suitable for a wide range of applications in comparison to polyacrylamide gel dosimeter since its extremely toxic acrylamide has been replaced with less harmful monomer i.e. 2-Acrylamido-2-MethylPropane Sulfonic acid (AMPS). To this end, the PAGAT gel dosimeter formula was used as a basis to test the new formulation of polymer gel dosimeter with a different monomer (AMPS) instead of acrylamide by using the %6 T and %50 C to the formula. The new formulation was named PAMPSGAT (Poly AMPS, Gelatin and THPC) polymer gel dosimeter. Moreover, the MRI response (R2) of dosimeters was analyzed in terms of different dose range as well as post-irradiation time. The results indicated that the dose-response (R2) of AMPS/Bis had a linear trend over a wide dose range. Furthermore, the results showed an acceptable temporal stability for the new polymer gel dosimeter.  相似文献   

15.
16.
PurposeTo characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator.MethodsThe dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.).The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors.ResultsA good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under 60Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes.ConclusionsThe microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions.  相似文献   

17.
PurposeThree MOSkins dosimeters were assembled over a rectal probe and used to perform in vivo dosimetry during HDR brachytherapy treatments of vaginal cancer. The purpose of this study was to verify the applicability of the developed tool to evaluate discrepancies between planned and measured doses to the rectal wall.Materials and methodsMOSkin dosimeters from the Centre for Medical Radiation Physics are particularly suitable for brachytherapy procedures for their ability to be easily incorporated into treatment instrumentation. In this study, 26 treatment sessions of HDR vaginal brachytherapy were monitored using three MOSkin mounted on a rectal probe. A total of 78 measurements were collected and compared to doses determined by the treatment planning system.ResultsMean dose discrepancy was determined as 2.2 ± 6.9%, with 44.6% of the measurements within ±5%, 89.2% within ±10% and 10.8% higher than ±10%. When dose discrepancies were grouped according to the time elapsed between imaging and treatment (i.e., group 1: ≤90 min; group 2: >90 min), mean discrepancies resulted in 4.7 ± 3.6% and 7.1 ± 5.0% for groups 1 and 2, respectively. Furthermore, the position of the dosimeter on the rectal catheter was found to affect uncertainty, where highest uncertainties were observed for the dosimeter furthest inside the rectum.ConclusionsThis study has verified MOSkin applicability to in-patient dose monitoring in gynecological brachytherapy procedures, demonstrating the dosimetric rectal probe setup as an accurate and convenient IVD instrument for rectal wall dose verification. Furthermore, the study demonstrates that the delivered dose discrepancy may be affected by the duration of treatment planning.  相似文献   

18.

This study aimed to investigate the thermoluminescent properties of ZrO2:Mg irradiated with a 6 MV X-ray beam and its potential application in radiotherapy dosimetry. ZrO2 powder was synthesized using the sol–gel method and Mg was used as a dopant. Irradiations were performed with ZrO2:Mg chips located at the center of a 10 × 10 cm2 radiation field at a source surface distance of 100 cm, below a stack of solid water slabs, at the depth of maximum absorbed dose. The investigated characteristics of the material included linearity with radiation dose, reproducibility, accuracy, sensitivity and fading. Regarding the intrinsic difference of the samples, the glow curves of the investigated ZrO2:Mg chips exposed to 1 Gy of 6 MV X-rays exhibited three or four peaks. The ZrO2:Mg samples showed a 47% fading at 24 h after irradiation, and the reproducibility of the thermoluminescence reading of ZrO2:Mg for equal irradiation conditions was ± 21%. The thermoluminescence response of the investigated ZrO2:Mg samples to various absorbed doses from 0.5 to 2.5 Gy showed a gentle increase of the thermoluminescence intensity with increasing absorbed dose. The obtained results show that ZrO2:Mg is not an appropriate candidate for X-ray photons in radiotherapy, due to low thermoluminescence peak temperature, low reproducibility, low sensitivity to various absorbed doses and significant fading.

  相似文献   

19.
PurposeA novel position-sensitive mega-size polycarbonate (MSPC) dosimeter is introduced. It provides photoneutron (PN) dose equivalent matrix of positions in and out of a beam of a high energy X-ray medical accelerator under a single exposure.MethodsA novel position-sensitive MSPC dosimeter was developed and applied. It has an effective etched area of 50 × 50 cm2, as used in this study, processed in a mega-size electrochemical etching chamber to amplify PN-induced-recoil tracks to a point viewed by the unaided eyes. Using such dosimeters, PN dose equivalents, dose equivalent profiles and isodose equivalent distribution of positions in and out of beams for different X-ray doses and field sizes were determined in a Siemens ONCOR Linac.ResultsThe PN dose equivalent at each position versus X-ray dose was linear up to 20 Gy studied. As the field size increased, the PN dose equivalent in the beam was also increased but it remained constant at positions out of the beam up to 20 cm away from the beam edge. The jaws and MLCs due to material differences and locations relative to the target produce different PN contributions.ConclusionsThe MSPC dosimeter introduced in this study is a perfect candidate for PN dosimetry with unique characteristics such as simplicity, efficiency, dose equivalent response, large size, flexibility to be bent, resembling the patient’s skin, highly position-sensitive with high spatial resolution, highly insensitive to X-rays, continuity in measurements and need to a single dosimeter to obtain PN dose equivalent matrix data under a single X-ray exposure.  相似文献   

20.
PurposeTo investigate the dose saving potential of direct-converting CdTe photon-counting detector technology for dedicated breast CT.Materials and methodsWe analyzed the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of two detector technologies, suitable for breast CT (BCT): a flat-panel energy-integrating detector with a 70 μm and a 208 μm thick gadolinium oxysulfide (GOS) and a 150 μm thick cesium iodide (CsI) scintillator and a photon-counting detector with a 1000 μm thick CdTe sensor.ResultsThe measurements for GOS scintillator thicknesses of 70 μm and 208 μm delivered 10% pre-sampled MTF values of 6.6 mm−1 and 3.2 mm−1, and DQE(0) values of 23% and 61%. The 10% pre-sampled MTF value for the 150 μm thick CsI scintillator 6.9 mm−1, and the DQE(0) value was 49%. The CdTe sensor reached a 10% pre-sampled MTF value of 8.5 mm−1 and a DQE(0) value of 85%.ConclusionThe photon-counting CdTe detector technology allows for significant dose reduction compared to the energy-integrating scintillation detector technology used in BCT today. Our comparative evaluation indicates that a high potential dose saving may be possible for BCT by using CdTe detectors, without loss of spatial resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号