首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThe purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ).MethodsFifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.ResultsThe peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001).ConclusionThis study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior neuromuscular activation (dominant hamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.  相似文献   

2.
ObjectiveTo investigate neuromuscular activation of quadriceps bellies during different tasks in patients before and after total knee arthroplasty (TKA).MethodsTwenty-six patients scheduled for TKA and 16 control subjects performed three isometric tasks: knee extension (KE), hip flexion (HF), hip flexion with contralateral hip extension (HFE). Surface electromyography signals of rectus femoris, vastus medialis and vastus lateralis were collected the day before (T0), at one (T1) and three (T2) days after surgery, whereas control subjects underwent a single evaluation. The Root Mean Square peak normalized for its highest value during the three tasks (nRMS-peak) was used as index of maximum neuromuscular activation for each belly. Sixteen patients performed the postoperative assessment, due to the placement of an elastomeric pump aimed at reducing pain in 10 patients.ResultsPatients showed lower rectus femoris nRMS-peak during KE compared to HF and HFE before and after surgery (p < 0.001), as occurred in control subjects. Differently from control subjects, patients showed higher vastus medialis and vastus lateralis nRMS-peak during HF compared to KE at T1 (p = 0.008) and T2 (p = 0.039).ConclusionTKA modified quadriceps neuromuscular activation during different tasks performed the same biomechanical condition. These findings may be considered in planning physiotherapy interventions after TKA.  相似文献   

3.
Dynamic knee valgus is a multi-planar motion that has been associated with anterior cruciate ligament injuries and patellofemoral pain syndrome. Clinical assessment of dynamic knee valgus is usually performed through visual appearance of medial knee displacement (MKD) during the overhead squat. The aim of this study is to identify the kinematic and neuromuscular parameters associated with MKD. Twenty-two females performed an overhead squat and were assigned to the control group (n = 14) or the MKD group (n = 8). Electromyography and kinematic data of the lower extremity were collected. We observed MKD to exhibit greater muscle activity in the following muscles: adductor magnus, biceps femoris, vastus lateralis and vastus medialis muscles during the eccentric phase of the overhead squat. No group differences were observed during the concentric phase. Regarding the kinematics, the MKD group showed higher knee internal rotation and, knee abduction and ankle abduction, compared to controls. The combined information from the muscle activity results and kinematics of squat helps to explain the occurrence of excessive medial knee displacement and, hence, providing relevant information for health professionals to address this injury risk factor.  相似文献   

4.
Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p  0.05) and large effect sizes (d  0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability.  相似文献   

5.
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (p<0.05) than the ankle joint at both landing heights. Substantial increase (p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.  相似文献   

6.
The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.  相似文献   

7.
ObjectiveMuscle strengthening exercises have been shown to improve pain and function in adults with mild-to-moderate knee osteoarthritis, but individual response rates can vary greatly. Predicting individuals who respond and those who do not is important in developing a more efficient and effective model of care for knee osteoarthritis (OA). Therefore, the purpose of this study was to use pre-intervention gait kinematics and patient-reported outcome measures to predict post-intervention response to a 6-week hip strengthening exercise intervention in patients with mild-to-moderate knee OA.MethodsThirty-nine patients with mild-to-moderate knee osteoarthritis completed a 6-week hip-strengthening program and were subgrouped as Non-Responders, Low-Responders, or High-Responders following the intervention based on their change in Knee injury Osteoarthritis Outcome Score (KOOS). Predictors of responder subgroups were retrospectively determined from baseline patient-reported outcome measures and kinematic gait parameters in a discriminant analysis of principal components. A 3–4 year follow-up on 16 of the patients with knee OA was also done to examine long-term changes in these parameters.ResultsA unique combination of patient-reported outcome measures and kinematic factors was able to successfully subgroup patients with knee osteoarthritis with a cross-validated classification accuracy of 85.4%. Lower patient-reported function in daily living (ADL) scores and hip frontal plane kinematics during the loading response were most important in classifying High-Responders from other sub-groups, while a combination of hip, knee, ankle kinematics were used to classify Non-Responders from Low-Responders.ConclusionPatient-reported outcome measures and objective biomechanical gait data can be an effective method of predicting individual treatment success to an exercise intervention. Measuring gait kinematics, along with patient-reported outcome measures in a clinical setting can be useful in helping make evidence-based decisions regarding optimal treatment for patients with knee OA.  相似文献   

8.
PurposeRunning at high speed and sudden change in direction or activity stresses the knee. Surprisingly, not many studies have investigated the effects of sprinting on knee’s kinetics and kinematics of soccer players. Hence, this study is aimed to investigate indices of injury risk factors of jumping-landing maneuvers performed immediately after sprinting in male soccer players.MethodsTwenty-three collegiate male soccer players (22.1±1.7 years) were tested in four conditions; vertical jump (VJ), vertical jump immediately after slow running (VJSR), vertical jump immediately after sprinting (VJFR) and double horizontal jump immediately after sprinting (HJFR). The kinematics and kinetics data were measured using Vicon motion analyzer (100Hz) and two Kistler force platforms (1000Hz), respectively.ResultsFor knee flexion joint angle, (p = 0.014, η = 0.15) and knee valgus moment (p = 0.001, η = 0.71) differences between condition in the landing phase were found. For knee valgus joint angle, a main effect between legs in the jumping phase was found (p = 0.006, η = 0.31), which suggests bilateral deficit existed between the right and left lower limbs.ConclusionIn brief, the important findings were greater knee valgus moment and less knee flexion joint angle proceeding sprint (HJFR & VJFR) rather than no sprint condition (VJ) present an increased risk for knee injuries. These results seem to suggest that running and sudden subsequent jumping-landing activity experienced during playing soccer may negatively change the knee valgus moment. Thus, sprinting preceding a jump task may increase knee risk factors such as moment and knee flexion joint angle.  相似文献   

9.
Cycling power decreases substantially during a maximal cycling trial of just 30 s. It is not known whether movement patterns and joint powers produced at each joint decrease to a similar extent or if each joint exhibits an individual fatigue profile. Changes in movement patterns and/or joint powers associated with overall task fatigue could arise from several different mechanisms or from a complex interplay of these mechanisms. The purpose of this investigation was to determine the changes in movement and power at each joint during a fatiguing cycling trial. Thirteen trained cyclists performed a 30 s maximal cycling trial on an isokinetic cycle ergometer at 120 rpm. Pedal forces and limb kinematics were recorded. Joint powers were calculated using a sagittal plane inverse dynamics model and averaged for the initial, middle, and final three second intervals of the trial, and normalized to initial values. Relative ankle plantar flexion power was significantly less than all other joint actions at the middle interval (51±5% of initial power; p=0.013). Relative ankle plantar flexion power for the final interval (37±3%) was significantly less than the relative knee flexion and hip extension power (p=0.010). Relative knee extension power (41±5%) was significantly less than relative hip extension power (55±4%) during the final three second interval (p=0.045). Knee flexion power (47±5%) did not differ from relative hip extension power (p=0.06). These changes in power were accompanied by a decrease in time spent extending by each joint with fatigue (i.e., decreased duty cycle, p<0.03). While central mechanisms may have played a role across all joints, because the ankle fatigued more than the hip and knee joints, either peripheral muscle fatigue or changes in motor control strategies were identified as the potential mechanisms for joint-specific fatigue during a maximal 30 s cycling trial.  相似文献   

10.
Jumping on an elastic surface produces a number of sensory and motor adjustments. This effect caused by jumping on the trampoline has been called “trampoline aftereffect”. The objective of the present study was to investigate the neuromuscular response related with this effect. A group of 15 subjects took part in an experimental session, where simultaneous biomechanical and electromyographic (EMG) recordings were performed during the execution of maximal countermovement jumps (CMJs) before and after jumping on an elastic surface. We assessed motor performance (leg stiffness, jump height, peak force, vertical motion of center of mass and stored and returned energy) and EMG activation patterns of the leg muscles. The results showed a significant increase (p ? 0.05) of the RMS EMG of knee extensors during the eccentric phase of the jump performed immediately after the exposure phase to the elastic surface (CMJ1), and a significant increase (p ? 0.05) in the levels of co-activation of the muscles crossing the ankle joint during the concentric phase of the same jump. Results related with motor performance of CMJ1 showed a significant increase in the leg stiffness (p ? 0.01) due to a lower vertical motion of center of mass (CoM) (p ? 0.005), a significant decrease in jump height (p ? 0.01), and a significantly smaller stored and returned energy (p ? 0.01). The changes found during the execution of CMJ1 may result from a mismatch between sensory feedback and the efferent copy.  相似文献   

11.
The goals of this investigation were to characterize gender differences in step-close (SC) and no-step (NS) countermovement jumps, examine biomechanical differences of the lead leg (LL) and trail leg (TL) during the SC jump, contrast the LL and TL of the SC to those of the NS jump, and determine whether bilateral asymmetries of the SC jump transfer to NS jump performance. The SC jump differs from the NS jump by a lead-in step that is continuous with the ensuing countermovement. Recreationally competitive volleyball players (12 men and 12 women) volunteered for the study. Three maximal-effort attempts in each condition were analyzed. Ground reaction forces were measured with force platforms and lower-extremity kinematics with optical capture. Ground reaction force as well as anatomical flexion and extension plane joint angle, moment, and power maximum (or minimum) and average values during the propulsion phase were analyzed with significance assessed at p < 0.05. Differences existed between the men and women in anthropometrics and jump height, as well as in many of the joint angles and body weight-normalized kinetic parameters, suggesting that women would benefit from increased strength and power at the ankle, knee, and hip. Differences also existed in many of the parameters between the LL and TL of the SC jump. Subjects jumped higher in the SC condition with greater demands placed on the LL, with the TL often acting similarly to its behavior in the NS condition. A few asymmetries of the LL and TL in the SC jump at the ankle and knee were also present in the NS jump. Strength and conditioning programs should include activities, such as plyometric jumps, that incorporate a step-close technique to optimize the development of this jump style. To minimize the development of functional asymmetries, the LL should be alternated by sets or repetitions.  相似文献   

12.
IntroductionThe aim of this study was to assess the efficacy of choline and DHA or exposure to environmental enrichment in obese adult and aging rats on alterations in body mass index, serum lipid profile and arterial wall changes, despite stopping high fat diet consumption and interventions during adulthood.Methods21 day old male Sprague Dawley rats were assigned as Experiment-1 & 2 - PND rats were divided into 4 groups with interventions for 7 months (n = 8/group). NC– Normal control fed normal chow diet; OB- Obese group, fed high fat diet; OB + CHO + DHA- fed high fat diet and oral supplementation of choline, DHA. OB + EE- fed high fat diet along with exposure to enriched environment .Experiment-2 had similar groups and interventions as experiment 1 but for next 5 months were fed normal chow diet without any interventions. Body mass index was assessed and blood was analyzed for serum lipid profile. Common Carotid Artery (CCA) was processed for Haematoxylin and eosin, Verhoff Vangeison stains. Images of tissue sections were analyzed and quantified using image J and tissue quant software.ResultsIn experiment.1, mean body mass index (p < 0.001), serum lipid profile (p < 0.01), thickness of tunica intima (p < 0.05), tunica media (p < 0.01) and percentage of collagen fibers (p < 0.01) of CCA were significantly increased in OB compared to NC. These were significantly attenuated in OB + CHO + DHA and OB + EE compared to OB. In experiment.2, mean body mass index (p < 0.01), serum lipid profile (p < 0.05) and thickness of tunica media of CCA (p < 0.01) were significantly increased in OB compared to NC. In OB + CHO + DHA and OB + EE, significant attenuation was observed in mean body mass index and mean thickness of tunica media compared to same in OB.ConclusionAdult obesity has negative impact on body mass index, serum lipid profile and arterial wall structure that persists through aging. Supplementation of choline and DHA or exposure to enriched environment during obesity attenuates these negative impacts through aging.  相似文献   

13.
The purpose of this study was to determine the effect of a weight-bearing free weight resistance training program alone on knee flexion, hip flexion, and knee valgus during unilateral and bilateral drop jump tasks. Twenty-nine young adult females with previous athletic experience were randomly divided into a control (n = 16) and a resistance training (n = 13) groups. The resistance training group completed 8 weeks of lower extremity, weight-bearing exercises using free weights, whereas the control group did not train. A pre- and posttest was conducted to measure knee valgus, knee flexion, and hip flexion during unilateral (30 cm) and bilateral (60 cm) vertical drop jumps for maximum height. Joint angles were determined using 3-dimensional electromagnetic tracking sensors (MotionMonitor; Innovative Sports Training, Inc., Chicago, IL, USA). Initial training intensity for the bilateral squat was 50% of the subject's 1 repetition maximum (RM), which increased 5% each week to 85% during the final week. Sets and repetitions ranged from 2 to 4 and from 4 to 12, respectively. The training loads for all other exercises (lunge, step-up, unilateral squat, and Romanian deadlift) increased from 15RM to 6RM from the initial to the final week. A repeated measures analysis of variance was used to determine differences in the hip and knee joint angles. No significant differences for knee valgus and hip flexion measures were found between the groups after training; however, knee flexion angle significantly increased in the training group from the pretest (77.2 ± 4.1°) to posttest (83.2 ± 3.7°) during the bilateral drop jump. No significant changes occurred during the unilateral drop jump. Bilateral measures for knee flexion, hip flexion, and knee valgus were significantly (p < 0.05) greater than the unilateral measures during the drop jump task, which indicate an increased risk for anterior cruciate ligament (ACL) injury during unilateral drop jumps. The data support that the strength and conditioning specialist can implement resistance training alone during a short-term training period to reduce the risk of ACL injury by increasing knee flexion during a bilateral drop jump task. Increased knee flexion angles after resistance training may indicate a reduced risk for knee injury from improved neuromuscular control, resulting in a softer landing.  相似文献   

14.
ObjectiveThis study aims to observe the effect on urine and sweat excretion levels of cadmium (Cd) and lead (Pb) in healthy men in a maximum incremental test until exhaustion and repeated exposure to heat.Methodstwenty-nine adult men divided into control group (CG; n = 14) and experimental group (EG; n = 15) performing two maximum tests until exhaustion in normothermia (22 °C) and hyperthermia (42 °C). EG experienced 9 sessions of heat exposure at high temperatures (100 °C) (HEHT). After the nine sessions, the initial tests were repeated in both groups. Urine samples were collected before and after each test. After the hyperthermia tests, sweat samples were gathered.ResultsUrinary Cd increased after initial tests in GC and in hyperthermia in EG (p < 0.05). Urinary excretion of Pb rose after HEHT (p < 0.05). Pb in sweat was higher in EG than in CG after HEHT (p < 0.05).ConclusionHeat exercise and constant exposure to heat can be a valid method to increase the excretion of toxic metals.  相似文献   

15.
Joint moments help us understand joint loading and muscle function during movement. However, the interpretation depends on the choice of reference frame, but the different reference frames have not been compared in dynamic, high-impact sporting movements. We have compared the magnitude and the resulting ranking of hip and knee joint moments expressed in the laboratory coordinate system, the local system of the distal segment and projected or decomposed to the Joint Coordinate System (JCS) axes. Hip and knee joint moments of drop jumps and sidestep cutting in 70 elite female handball players were calculated based on recordings from an eight-camera 240 Hz system and two force platforms and expressed with the four methods. The greatest variations in magnitude between conditions were seen for drop jump hip internal rotation (range: 0.31–0.71 Nm/kg) and sidestep cutting knee flexion (2.87–3.39 Nm/kg) and hip internal rotation (0.87–2.36 Nm/kg) and knee internal rotation (0.10–0.40 Nm/kg) moments. The rank correlations were highest between conditions for flexion moments (0.88–1.00) and sidestep cutting abduction moments (0.71–0.98). The rank correlations ranged from 0.64 to 0.73 for drop jump knee abduction moments and between −0.17 and 0.67 for hip and knee internal rotation moments. Expression of joint moments in different reference systems affects the magnitude and ranking of athletes. This lack of consistency may complicate the comparison and combination of results. Projection to the JCS is the only method where joint moments correspond to muscle and ligament loading. More widespread adoption of this convention could facilitate comparison of studies and ease the interpretation of results.  相似文献   

16.

Background

C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) have been shown to be useful for diagnosis of prosthetic hip and knee infection. Little information is available on CRP and ESR in patients undergoing revision or resection of shoulder arthroplasties or spine implants.

Methods/Results

We analyzed preoperative CRP and ESR in 636 subjects who underwent knee (n = 297), hip (n = 221) or shoulder (n = 64) arthroplasty, or spine implant (n = 54) removal. A standardized definition of orthopedic implant-associated infection was applied. Receiver operating curve analysis was used to determine ideal cutoff values for differentiating infected from non-infected cases. ESR was significantly different in subjects with aseptic failure infection of knee (median 11 and 53.5 mm/h, respectively, p = <0.0001) and hip (median 11 and 30 mm/h, respectively, p = <0.0001) arthroplasties and spine implants (median 10 and 48.5 mm/h, respectively, p = 0.0033), but not shoulder arthroplasties (median 10 and 9 mm/h, respectively, p = 0.9883). Optimized ESR cutoffs for knee, hip and shoulder arthroplasties and spine implants were 19, 13, 26, and 45 mm/h, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 89 and 74% for knee, 82 and 60% for hip, and 32 and 93% for shoulder arthroplasties, and 57 and 90% for spine implants. CRP was significantly different in subjects with aseptic failure and infection of knee (median 4 and 51 mg/l, respectively, p<0.0001), hip (median 3 and 18 mg/l, respectively, p<0.0001), and shoulder (median 3 and 10 mg/l, respectively, p = 0.01) arthroplasties, and spine implants (median 3 and 20 mg/l, respectively, p = 0.0011). Optimized CRP cutoffs for knee, hip, and shoulder arthroplasties, and spine implants were 14.5, 10.3, 7, and 4.6 mg/l, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 79 and 88% for knee, 74 and 79% for hip, and 63 and 73% for shoulder arthroplasties, and 79 and 68% for spine implants.

Conclusion

CRP and ESR have poor sensitivity for the diagnosis of shoulder implant infection. A CRP of 4.6 mg/l had a sensitivity of 79 and a specificity of 68% to detect infection of spine implants.  相似文献   

17.
IntroductionProspective studies on rivaroxaban and apixaban have shown the safety and efficacy of direct anticoagulation agents (DOAC)s used peri-procedurally during radiofrequency ablation (RFA) of atrial fibrillation (AF). Studies comparing the two agents have not been performed.MethodsConsecutive patients from a prospective registry who underwent RFA of AF between April 2012 and March 2015 and were on apixaban or rivaroxaban were studied. Clinical variables and outcomes were noted.ResultsThere were a total of 358 patients (n = 56 on apixaban and n = 302 on rivaroxaban). There were no differences in baseline characteristics between both groups. The last dose of rivaroxaban was administered the night before the procedure in 96% of patients. In patients on apixaban, 48% of patients whose procedure was in the afternoon took the medication on the morning of the procedure. TIA/CVA occurred in 2 patients (0.6%) in rivaroxaban group with none in apixaban group (p = 0.4). There was no difference in the rate of pericardial effusion between apixaban and rivaroxaban groups [1.7% vs 0.6% (p = 0.4)]. Five percent of patients in both groups had groin complications (p = 0.9). In apixaban group, all groin complications were small hematomas except one patient who had a pseudoaneurysm (1.6%). One pseudo-aneurysm, 1 fistula and 3 large hematomas were noted in patients on rivaroxaban (1.7%) with the rest being small hematomas. DOACs were restarted post procedure typically 4 h post hemostasis.ConclusionsPeri-procedural uninterrupted use of apixaban and rivaroxaban during AF RFA is safe and there are no major differences between both groups.  相似文献   

18.
PurposeTo systematically review and analyse whether musculoskeletal conditions affect peripheral joint muscle force control (i.e. magnitude and/or complexity of force fluctuations).MethodsA literature search was conducted using MEDLINE, CINAHL and SPORTDiscus databases (from inception-8th April 2021) for studies involving: 1) participants with musculoskeletal disease, injury, surgery, or arthroplasty in the peripheral joints of the upper/lower limb; 2) comparison with an unaffected control group or unaffected contralateral limb; and 3) measures of the magnitude and/or complexity of force fluctuations during targeted isometric contractions. The methodological quality of studies was evaluated using a modified Downs and Black Quality Index. Studies were combined using the standardized mean difference (SMD) in a random-effects model.Results14 studies (investigating 694 participants) were included in the meta-analysis. There was a significant effect of musculoskeletal conditions on peripheral joint muscle force coefficient of variation (CV; SMD = 0.19 [95 % CI 0.06, 0.32]), whereby individuals with musculoskeletal conditions exhibited greater CV than controls. Subgroup analyses revealed that CV was only greater: 1) when comparison was made between symptomatic and asymptomatic individuals (rather than between affected and contralateral limbs; SMD = 0.22 [95 % CI 0.07, 0.38]); 2) for conditions of the knee (SMD = 0.29 [95 % CI 0.14, 0.44]); and 3) for ACL injury post-surgery (SMD = 0.56 [95 % CI 0.36, 0.75]).ConclusionMusculoskeletal conditions result in an increase in peripheral joint muscle force CV, with this effect dependent on study design, peripheral joint, and surgical status. The greater force CV is indicative of decreased force steadiness and could have implications for long-term tissue health/day-to-day function.  相似文献   

19.
IntroductionCutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles.Material and methods13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4 × 2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α  0.05 a priori.ResultsAt all cutting angles, males showed greater knee flexion angles than females (p < 0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion −42.53° ± 8.95°, females decreased their knee flexion angle from −40.6° ± 7.2° when cutting at 45° to −36.81° ± 9.10° when cutting at 90°, 135° and 180° (p < 0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p < 0.05). At 90°, 135° and 180°, males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cutting angles and then stabilized compared to the 45° cutting angle (p < 0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p < 0.01).ConclusionIt can be concluded that different cutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention.  相似文献   

20.
The aim of this study was to examine the associations of spinal kinematics and physical activity (PA) with bodily pain, physical functioning, and work ability among health care workers with low back pain (LBP). Spinal kinematics and PA were measured with a wireless Inertial Measurement Unit system (ValedoMotion®) and a waist-worn tri-axial accelerometer (Hookie AM20), respectively. Their association was assessed in relation to Work Ability Index (WAI), bodily pain and physical functioning (RAND-36) in 210 health care workers with recurrent LBP. Greater lumbar movement variability/less deterministic lumbar movement (in angular velocity) during a “Pick Up a Box” functional task was correlated with higher amounts of step counts (r = -0.29, p = 0.01) and moderate PA (r = -0.24, p = 0.03). A higher amount of PA (p = 0.03) as well as less movement control impairment (p = 0.04) and movement variability (p = 0.03) were associated with greater work ability, whilst greater vigorous PA was the only parameter to explain higher physical functioning (p = 0.02). PA and movement variability were relative to each other to explain bodily pain (p = 0.01). These findings show the importance of considering the interaction between lumbar kinematics and physical activity while planning strategies to improve bodily pain, physical functioning and work ability among health care workers with LBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号