首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
The relationships of EMG and muscle force with elbow joint angle were investigated for muscle modelling purposes. Eight subjects had their arms fixed in an isometric elbow jig where the biceps brachii was electrically stimulated (30 Hz) and also in maximum voluntary contraction (MVC). Biceps EMG and elbow torque transduced at the wrist were recorded at 0.175 rad intervals through 1.75 rad of elbow extension. The results revealed that while the torque-length relationship displayed the classic inverted U pattern in both evoked and MVC conditions, the force-length relationship displayed a monotonically increasing pattern. Analyses of variance of the EMG data showed that there were no significant changes in the EMG amplitudes for the different joint angles during evoked or voluntary contractions. The result also showed that electrical stimulation can effectively isolated the torque-angle and force-length relationships of the biceps brachii and that the myoelectric signal during isometric contraction is uniform regardless of the length of the muscle or the joint angle.  相似文献   

2.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

3.
This study was designed to investigate the local effect of experimental muscle pain on the MMG and the surface EMG during a range of sub-maximal isometric contractions. Muscle pain was induced by injections of hypertonic saline into the biceps brachii muscle in 12 subjects. Injections of isotonic saline served as a control. Pain intensity and location, MMG and surface EMG from the biceps brachii were assessed during static isometric (0%, 10%, 30%, 50% and, 70% of the maximal voluntary contraction) and ramp isometric (0-50% of the maximal voluntary contraction) elbow flexions. MMG and surface EMG signals were analyzed in the time and frequency domain. Experimentally induced muscle pain induced an increase in root mean square values of the MMG signal while no changes were observed in the surface EMG. Most likely this increase reflects changes in the mechanical contractile properties of the muscle and indicates compensatory mechanisms, i.e. decreased firing rate and increased twitch force to maintain a constant force output in presence of experimental muscle pain. Under well-controlled conditions, MMG recordings may be more sensitive than surface EMG recordings and clinically useful for detecting non-invasively increased muscle mechanical contributions during muscle pain conditions.  相似文献   

4.
The aim of this study was to determine the effect of elbow joint position on electromyographic (EMG) and mechanomyographic (MMG) activities of agonist and antagonist muscles in young and old women. Surface EMG and MMG were recorded from the triceps and biceps brachii, and brachioradialis muscles during isometric elbow extensions in young and old women. The measurements were carried out at an optimal joint angle (A(o)), as well as at smaller (A(s) = A(o) - 30 degrees ) and larger (A(l) = A(o) + 30 degrees ) angles. The normalized to force EMG amplitude (RMS-EMG/F) was smaller in old women compared to young in all muscles. The RMS-EMG/F of the triceps brachii muscle was not affected by muscle length while that of the biceps brachii and brachioradialis muscles increased at shortest muscle length in both groups. The normalized to force MMG amplitude (RMS-MMG/F) was smaller in old than in young in the triceps brachii muscle only. There was an increase in RMS-MMG/F with triceps brachii and biceps brachii muscle shortening in both groups, and in the brachioradialis muscle -- in young only. Compared to young, older women exhibited a bigger force fluctuation during maximum voluntary contraction, but these did not contribute significantly to the RMS-MMG. Skinfold thickness accounted for the RMS-EMG/F and RMS-MMG/F differences seen between old and young women in the biceps brachii muscle only. It is concluded that, the EMG and MMG response to muscles length change in agonist and antagonist muscles is generally similar in old and young women but the optimal angle shifts toward a bigger value in older women.  相似文献   

5.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

6.
The spatial distributions of muscle innervation zone (IZ) and muscle fiber conduction velocity (CV) were examined in nine healthy young male participants. High-density surface electromyography (EMG) was collected from the biceps brachii muscle when subjects performed isometric elbow flexions at 20% to 80% of the maximal voluntary contraction (MVC). A total of 9498 samples of IZs were identified and CVs were calculated using the Radon transform. The center and width of IZ sample distribution were compared within four different force levels and six medial to lateral electrode column positions using repeated measures ANOVA and multiple comparison tests. Significant shifts of IZ center were observed in the medial columns (Columns 5, 6, and 7) compared with the lateral columns (Columns 3 and 4) (p < 0.05). Similarly, significant differences in the IZ width were found in Column 7 and 8 compared to Column 3 (p < 0.05). In contrast, muscle CV was unaffected by column position. Instead, muscle CV was faster at 40% and 80% MVC compared to 20% MVC (p < 0.05). The findings of this study add further insights into the physiological properties of the biceps brachii muscle.  相似文献   

7.
One way to improve the weak triceps brachii voluntary forces of people with chronic cervical spinal cord injury may be to excite the paralyzed or submaximally activated fraction of muscle. Here we examined whether elbow extensor force was enhanced by vibration (80 Hz) of the triceps or biceps brachii tendons at rest and during maximum isometric voluntary contractions (MVCs) of the elbow extensors performed by spinal cord-injured subjects. The mean +/- SE elbow extensor MVC force was 22 +/- 17.5 N (range: 0-23% control force, n = 11 muscles). Supramaximal radial nerve stimuli delivered during elbow extensor MVCs evoked force in six muscles that could be stimulated selectively, suggesting potential for force improvement. Biceps vibration at rest always evoked a tonic vibration reflex in biceps, but extension force did not improve with biceps vibration during triceps MVCs. Triceps vibration induced a tonic vibration reflex at rest in one-half of the triceps muscles tested. Elbow extensor MVC force (when >1% of control force) was enhanced by vibration of the triceps tendon in one-half of the muscles. Thus triceps, but not biceps, brachii tendon vibration increases the contraction strength of some partially paralyzed triceps brachii muscles.  相似文献   

8.
The aim of this study was to quantify the effects of spatial reorganisation of muscle activity on task-related and tangential components of force variability during sustained contractions. Three-dimensional forces were measured from isometric elbow flexion during submaximal contractions (50 s, 5–50% of maximal voluntary contraction (MVC)) and total excursion of the centre of pressure was extracted. Spatial electromyographic (EMG) activity was recorded from the biceps brachii muscle. The centroids of the root mean square (RMS) EMG and normalised mutual information (NMI) maps were computed to assess spatial muscle activity and spatial relationship between EMG and task-related force variability, respectively. Result showed that difference between the position of the centroids at the beginning and at the end of the contraction of the RMS EMG and the NMI maps were different in the medial–lateral direction (P < 0.05), reflecting that muscle regions modulate their activity without necessarily modulating the contribution to the task-related force variability over time. Moreover, this difference between shifts of the centroids was positively correlated with the total excursion of the centre of pressure at the higher levels of contractions (>30% MVC, R2 > 0.30, P < 0.05), suggesting that changes in spatial muscle activity could impact on the modulation of tangential forces. Therefore, within-muscle adaptations do not necessarily increase force variability, and this interaction can be quantified by analysing the RMS EMG and the NMI map centroids.  相似文献   

9.
The aim of the study was to determine the directionality of the coupling of mechanical vibrations across the biceps brachii muscle at different frequencies of interest during voluntary contraction. The vibrations that are naturally generated by skeletal muscles were recorded by a two-dimensional array of skin mounted accelerometers over the biceps brachii muscle (surface mechanomyogram, S-MMG) during voluntary isometric contractions in ten healthy young men. As a measure of the similarity of vibration between a given pair of accelerometers, the spatial coherence of S-MMG at low (f < 25 Hz) and high (f > 25 Hz) frequency bands were investigated to determine if the coupling of the natural mechanical vibrations were due to the different physiological muscle activity at low and high frequencies. In both frequency bands, spatial coherence values for sensor pairs aligned longitudinally along the proximal to distal ends of the biceps were significantly higher compared with those for the sensor pairs oriented perpendicular to the muscle fibers. This difference was more evident at the higher frequency band. The findings indicated that coherent mechanical oscillations mainly propagated along the longitudinal direction of the biceps brachii muscle fibers at high frequencies (f > 25 Hz).  相似文献   

10.
The present study aimed to evaluate the effect of a resistance training program based on the electromyographic fatigue threshold (EMGFT, defined as the highest exercise intensity performed without EMG alterations), on the EMG amplitude (root mean square, RMS) and frequency (median frequency, MF) values for biceps brachii (BB), brachioradialis (BR), triceps brachii (TB) and multifidus (MT). Twenty healthy male subjects, (training group [TG], n = 10; control group [CG], n = 10), firstly performed isometric contractions, and after this, dynamic biceps curl at four different loads to determine the EMGFT. The TG training program used the BB EMGFT value (8 weeks, 2 sessions/week, 3 exhaustive bouts/session, 2 min rest between bouts). No significant differences were found for the isometric force after the training. The linear regression slopes of the RMS with time during the biceps curl presented significant decrease after training for the BB, BR and TB muscles. For the MT muscle, the slope and MF intercept values changed with training. The training program based on the EMGFT influenced EMG the amplitude more than EMG frequency, possibly related to the recruitment patterns of the muscles, although the trunk extensor muscles presented changes in the frequency parameter, showing adaptation to the training program.  相似文献   

11.
The purpose of this study was to examine the acute effects of maximal concentric vs. eccentric exercise on the isometric strength of the elbow flexor, as well as the biceps brachii muscle electromyographic (EMG) responses in resistance-trained (RT) vs. untrained (UT) men. Thirteen RT men (age: 24 ± 4 years; height: 180.2 ± 7.7 cm; body weight: 92.2 ± 16.9 kg) and twelve UT men (age: 23 ± 4 years; height: 179.2 ± 5.0 cm; body weight: 81.5 ± 8.6 kg) performed six sets of ten maximal concentric isokinetic (CON) or eccentric isokinetic (ECC) elbow flexion exercise in two separate visits. Before and after the exercise interventions, maximal voluntary contractions (MVCs) were performed for testing isometric strength. In addition, bipolar surface EMG signals were detected from the biceps brachii muscle during the strength testing. Both CON and ECC caused isometric strength to decrease, regardless of the training status. However, ECC caused greater isometric strength decline than CON did for the UT group (p = 0.006), but not for the RT group. Both EMG amplitude and mean frequency significantly decreased and increased, respectively, regardless of the training status and exercise intervention. Resistance-trained men are less susceptible to eccentric exercise-induced muscle damage, but this advantage is not likely linked to the chronic resistance training-induced neural adaptations.  相似文献   

12.
Contracting muscle generates sounds which can be recorded easily by means of a microphone. To determine if a phomomyogram (PMG) can be used to monitor muscle force, a comparison was made between simultaneous recordings of PMG and monopolar electromyogram (EMG) from the isometrically contracting biceps brachii muscle and the external flexion force. Locations of the monopolar electrode and microphone were identified in relation to the motor point. Whatever the recording site, PMG amplitude was proportional to EMG amplitude and both showed a quadratic relationship to muscle force. Changes in the PMG spectrum with force were similar to those in EMG, i.e. the mean power frequency increased up to about 30% maximal voluntary contraction and then reached a plateau. Despite a slightly higher variability, PMG was shown to be a valid index of muscular isometric force. At the same force, the amplitude of both PMG and EMG was lower in the prone than in the supine position of the hand. This result indicated a selective recording of biceps brachii muscle activity.  相似文献   

13.
Effects of an exhaustive eccentric exercise (EE) on the motor control of maximal velocity rhythmic elbow extension/flexion movement (RM) were examined in eight male students. The exhaustive EE consisted of 100 maximal eccentric actions of the elbow flexor muscles. Movement range was 40–170° in EE at an angular velocity of 2 rad s?1. A directive scaled RM of 60° with visual feedback was performed in a sitting position, with the right forearm fixed to the lever arm in horizontal plane above protractor. Surface electromyographic activity (EMG) was recorded from the biceps brachii (BB) and triceps brachii (TB) muscles. Maximal isokinetic eccentric and concentric tests and RM test were conducted before, after, 0.5 h, 2 days and 7 days after the exercise. Dynamic force production was deteriorated after EE (P < .001), and did not recover fully within 7 days. The delayed recovery phase was characterized by delayed onset of muscle soreness (DOMS) and elevated serum creatine kinase (CK) activity. The RM test revealed a delayed increase of the fatigued BB muscle EMG activity, but the maximal RM velocity could be preserved. The present results emphasize the capacity of the neuromuscular system to compensate for prolonged eccentric-induced contractile failure by optimizing antagonistic muscles coordination in a demanding rhythmic task. The underlying compensatory mechanisms could be related to increased sensitization of small diameter muscle nerve endings.  相似文献   

14.
Surface electromyography parameters such as root-mean-square value (RMS) and median power frequency (FMED) are commonly used to assess the input of the central nervous system (CNS) to a muscle. However, RMS and FMED are influenced not only by CNS input, but also by peripheral muscle properties. The number of motor unit action potentials (MUAPs) per second, or MUAP Rate (MR), being the sum of the firing rates of the active motor units, would reflect CNS input solely. This study explored MR behaviour in relation to force and during a fatiguing contraction in comparison to RMS and FMED.In the first experiment (n = 10) a step contraction of shoulder elevation force (20–100 N) was performed while multi-channel array EMG was recorded from the upper trapezius muscle. The sensitivity of MR for changes in force (1.8%/N) was almost twice as high as that of RMS (0.97%/N), indicating that MR may be more suitable for monitoring muscle force. The second experiment (n = 6) consisted of a 15-min isometric contraction of the biceps brachii. MR increased considerably less than RMS (0.9% vs. 4.1%), suggesting that MR selectively reflects central motor control whereas RMS also reflects peripheral changes. These results support that, at relatively low force levels, MR is a suitable parameter for non-invasive assessment of the input of the CNS to the muscle.  相似文献   

15.
The present work aimed at investigating the effects of mechanically amplified tremor on cortico-muscular coherence (CMC) in the alpha band. The study of CMC in this specific band is of particular interest because this coherence is usually absent in healthy individuals and it is an aberrant feature in patients affected by pathological tremors; understanding its mechanisms is therefore important. Thirteen healthy volunteers (23±4 years) performed elbow flexor sustained contractions both against a spring load and in isometric conditions at 20% of maximal voluntary isometric contraction (MVC). Spring stiffness was selected to induce instability in the stretch reflex servo loop. 64 EEG channels, surface EMG from the biceps brachii muscle and force were simultaneously recorded. Contractions against the spring resulted in greater fluctuations of the force signal and EMG amplitude compared to isometric conditions (p<.05). During isometric contractions CMC was systematically found in the beta band and sporadically observed in the alpha band. However, during the contractions against the spring load, CMC in the alpha band was observed in 12 out of 13 volunteers. Partial directed coherence (PDC) revealed an increased information flow in the EMG to EEG direction in the alpha band (p<.05). Therefore, coherence in the alpha band between the sensory-motor cortex and the biceps brachii muscle can be systematically induced in healthy individuals by mechanically amplifying tremor. The increased information flow in the EMG to EEG direction may reflect enhanced afferent activity from the muscle spindles. These results may contribute to the understanding of the presence of alpha band CMC in tremor related pathologies by suggesting that the origin of this phenomenon may not only be at cortical level but may also be affected by spinal circuit loops.  相似文献   

16.
The aim of this study was to investigate the importance of duration of differential activations between the heads of the biceps brachii on local fatigue during prolonged low-level contractions. Fifteen subjects carried out isometric elbow flexion at 5% of maximal voluntary contraction (MVC) for 30 min. MVCs were performed before and at the end of the prolonged contraction. Surface electromyographic (EMG) signals were recorded from both heads of the biceps brachii. Differential activation was analysed based on the difference in EMG amplitude (activation) between electrodes situated at the two heads. Differential activations were quantified by the power spectral median frequency of the difference in activation between the heads throughout the contraction. The inverse of the median frequency was used to describe the average duration of the differential activations. The relation between average duration of the differential activations and the fatigue-induced reduction in maximal force was explored by linear regression analysis. The main finding was that the average duration of differential activation was positively associated to relative maximal force at the end of the 30 min contraction (R2 = 0.5, P < 0.01). The findings of this study highlight the importance of duration of differential activations for local fatigue, and support the hypothesis that long term differential activations prevent fatigue during prolonged low-level contractions.  相似文献   

17.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

18.
The purpose of the present study was to determine whether the motor unit (MU) recruitment strategy of the agonist and antagonist muscles in the dominant arm differs from that in the non-dominant arm. The median frequency (MF) of the power density spectrum (PDS) of the electromyogram (EMG) was used as a tracking parameter to describe the MU recruitment. In 8 subjects the EMG was recorded from the biceps brachii and triceps brachii of each limb during isometric elbow flexion performed in a ramp fashion. Force was increased from 0 to 100% of the maximum voluntary contraction (MVC) in 3 s following a track displayed on an oscilloscope. When comparing the dominant versus non-dominant arm we found no statistical difference in the MU recruitment pattern of the biceps brachii and the triceps. Because the dominant arm was not always the better performing arm, we grouped the data according to the ability of the subjects to track the ramp signal. In this case we found a statistically significant difference between the better and worse performing arm in the full MU recruitment of the biceps. A more precise and accurate control of the increase in force was obtained when the central nervous system selected a slower and prolonged recruitment of MUs in the agonist muscle.  相似文献   

19.
While much is known about the physiological basis of local muscular fatigue, little is known about the kinematic and electromyographic (EMG) consequences of brief fatiguing isometric contractions. Five male subjects performed a horizontal elbow flexion-extension reversal movement over 90° in 250 ms to reversal before and after one of five single maximal isometric elbow flexions ranging in duration from 15–120 s. Surface EMG signals were recorded from the biceps brachii, the long head of the triceps, the clavicular portion of the pectoralis major, and the posterior deltoid. Spatial and temporal errors were computed from potentiometer output. During the fatiguing bouts, maximum voluntary force dropped linearly an average of 4% in the 15 s condition and 58% in the 120 s condition relative to maximum force. The associated biceps rectified-integrated EMG signal increased from the onset of each fatigue bout for 15–30 s, then decreased over the remainder of the longer bouts. Following the fatigue bout, subjects undershot the target distance on the first movement trial in all conditions. Following short fatigue durations (i.e. 15–30 s), the peak biceps EMG amplitude was disrupted and movement velocity decreased, but both measures recovered within seconds. As fatigue duration increased, progressive decreases in peak velocity occurred with increased time to reversal, reduced EMG amplitude, and longer recovery times. However, the relative timing of the EMG pattern was maintained suggesting the temporal structure was not altered by fatigue. The findings suggest that even short single isometric contractions can disrupt certain elements of the motor control system.  相似文献   

20.
This study was to investigate the motor functional recovery process in chronic stroke during robot-assisted wrist training. Fifteen subjects with chronic upper extremity paresis after stroke attended a 20-session wrist tracking training using an interactive rehabilitation robot. Electromyographic (EMG) parameters, i.e., EMG activation levels of four muscles: biceps brachii (BIC), triceps brachii (TRI, lateral head), flexor carpiradialis (FCR), and extensor carpiradialis (ECR) and their co-contraction indexes (CI) were used to monitor the neuromuscular changes during the training course. The EMG activation levels of the FCR (11.1% of decrease from the initial), BIC (17.1% of decrease from the initial), and ECR (29.4% of decrease from the initial) muscles decreased significantly during the training (P < 0.05). Such decrease was associated with decreased Modified Ashworth Scores for both the wrist and elbow joints (P < 0.05). Significant decrease (P < 0.05) was also found in CIs of muscle pairs, BIC&TRI (21% of decrease from the initial), FCR&BIC (11.3% of decrease from the initial), ECR&BIC (49.3% of decrease from the initial). The decreased CIs related to the BIC muscle were mainly caused by the reduction in the BIC EMG activation level, suggesting a better isolation of the wrist movements from the elbow motions. The decreased CI of ECR& FCR in the later training sessions (P < 0.05) was due to the reduced co-contraction phase of the antagonist muscle pair in the tracking tasks. Significant improvements (P < 0.05) were also found in motor outcomes related to the shoulder/elbow and wrist/hand scores assessed by the Fugl–Meyer assessment before and after the training. According to the evolution of the EMG parameters along the training course, further motor improvements could be obtained by providing more training sessions, since the decreases of the EMG parameters did not reach a steady state before the end of the training. The results in this study provided an objective and quantitative EMG measure to describe the motor recovery process during poststroke robot-assisted wrist for the further understanding on the neuromuscular mechanism associated with the recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号